学年

教科

質問の種類

数学 高校生

この問題が解説を読んでもうまく理解できません。どなたか解説お願いします…🙏🙏

1 **** 百合の数 先頭車両から順に1からnまでの番号のついたn両編成の列車がある。 ただし n≧2 とする。 各車両を赤色、青色,黄色のいずれか1色で塗ると き,隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何 通りか. 0212 AF CO (京都大) 考え方 まずは具体例で考える. n=2のとき, (2両の塗り方) 2両目が赤のとき,1両目は赤、青、黄のいずれでもよい。 (1) 2両目が青, 黄のとき, 1両目は赤でなければならない。 一般には,n両目を考え,それが赤か, 赤以外かで場合分けして考える. 解答 条件を満たすn両の車両の塗り方の数を an, そのうち最後 尾の車両が赤である塗り方の数をbm, 最後尾の車両が赤以外 である塗り方の数を cm とする. a2=5, 62=3, C2=2 n=2 の場合, また, an=bn+cn ・・・・① ....... ここで,(n+1) 両目について考える. (n+1) 両目が赤のとき, n両目は赤, 青, 黄のいずれでも bn+1=bn+cn よいので, 一方,(n+1) 両目が青, 黄いずれかのとき, n両目は赤で なければならないので, Cn+1=26n ここで,b=1, G=2 とすると,②,③はn=1のときも 成り立つので、 n ≧1 として考える. ②③ bn+2=6n+1+26n [bn+2-2bn+1=-(bn+1-2bn) ・④ これより, | bn+2+bn+1=2(bn+1+bn) 5 2=2 ④より, 数列{bn+1-26} は初項 62-261=3-2=1, 公比1の等比数列だから, .... bn+1-26=1・(-1)^-1=(-1)^-1 ・⑥ ⑤より, 数列{bn+1+bn} は初項 62+b1=3+1=4, 公比2の等比数列だから, bn+1+bn=4.2n-1=2n+1 ⑥ ⑦ より, -3bn=(−1)n-1-2n+1, bn=(2²+¹+(−1)"} ③より,n≧2のとき, Cn=26n-1=2.1/23(2″+(-1)^-1=1/23(2"-2 (-1)"} 1 {2n+2-(-1)"} (通り) (n≧2) 3 よって,①より, - an= 最後尾の車両の色に 注目して考える. 1両目 2両目 赤 赤 赤62 青黄赤赤 C2 両目(n+1) 目 赤 }ón 赤 園 赤+1 Cn 赤}ón 青 赤}6 黄 x2=x+2 より *Cn+1 (x-2)(x+1)=0 x=2, -1 n≧2で考えると, b3-262 NLC =(3+2)-2・3=-1 ・⑦6+1-26な部分 |=-1(-1)-2 =(-1)-1 -(-1)"-¹=(-1)"

回答募集中 回答数: 0
化学 高校生

高二の化学基礎の問題です。至急答え付きで教えてもらいたいです

目標 3分 目標 6分 目標 6分 13 同位体が存在する元素の原子量 原子量の値は、概数値をそのまま用いることが多いが,ここでは原子量の値を計算によって求め てみよう。原子量は「同位体の相対質量× 存在比(%) 100 の総和」で求められる。 ① 塩素には CI が 75.0 %, "CI が 25.0%の割合で同位体が存在するとする。 塩素の原子量を有効 数字3桁で求めよ。 塩素の同位体の相対質量を3Cl=35.0, Cl=37.0 とする。 ② 天然の炭素には 12C が 98.9%, "3C が 1.10%の割合で同位体が存在する。 炭素の原子量を有効 数字3桁で求めよ。 炭素の同位体の相対質量を 'C=12 (基準), 'C=13.0 とする。 4 同位体の存在比 存在比(%) 100 の総和」を利用すると, 原子量・同位体の相対質量・ 存在比のどれか2つの値がわかれば, 残りの値を計算で求めることができる。 ① 塩素には 35CI と 37 CI の同位体が存在し, それぞれの相対質量は 35Cl=35.0, 3Cl=37.0 である。 塩素の原子量が35.5 であるとすると, 35CI の存在比 (%) を有効数字2桁で答えよ。 「原子量 = 同位体の相対質量× % ② 天然のホウ素には "B と "B の同位体が存在し, それぞれの相対質量は 'B=10.0, "B=11.0 で ある。 ホウ素の原子量が10.8 とすると, "B の存在比 (%) を有効数字2桁で答えよ。 「原子量 分子量 式量」の計算の徹底演習 % 5 同位体の相対質量 塩素には、2種類の同位体が存在し, その存在比は質量数35のCI が 75%, 質量数nの "CI が 25%である。 塩素の原子量が35.5とわかっているとき, "CI の相対質量を有効数字2桁で求めよ。 塩素の同位体の相対質量を 35Cl=35 とする。 23

回答募集中 回答数: 0
数学 高校生

確率の問題です。 2枚目の写真のクとケが分かりません。クは、なぜ条件付き確率を求めるのかを教えていただきたいです。ケは、途中式を丁寧に教えていただきたいです。

第3部~第5間は、いずれか2問を選択し、 解答しなさい。 第3問 (選択問題)(配点20) 赤球と白球が入っている袋がある。 次の操作について考えよう [操作] 袋から球を取り出し、その色を確認してから袋に関す。さらに、取り出し た球と同じ色の球を装に追加する。 この操作を繰り返し行うときを回目に赤を取り出す確率をPとする。 (1) 最初に袋の中に赤球と白球1個が入っているとする。 P 2 イ P₁ = である。また、1回目に赤が取り出され、 2回目にも赤球が取 3 り出される確率は ウ エ 2 である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) 最初に袋の中に赤と白 が入っているとする。 1回目に赤が取り出され、 2回目にも赤球が取り出される確率はオ り、1回目に白球が取り出され、 2回目には赤球が取り出される確率はアカ これらを用いて計算すると、袋に入っている球の個数によらず、P=Pzである ことがいえる。 オ @ @ e a at b カの解答〈同じものを繰り返し選んでもよい。) a(a +1) (a+b)(a+b+1) ab (a + b)(a+b+1) b(a+1) (a+b)(a+b+1) (a+b)(a+b+1) (a + 1)² (a+b) (4+6+1) a(b+1) (a+b)(a+b+1) (a + 1)(b +1) (a+b)(a+b+1) Aut alb a (数学Ⅰ・数学A 第3次ページに続

回答募集中 回答数: 0
数学 高校生

余弦定理の証明ですアイウ、エカクはどうやって出しているのか詳しく解説お願いします

まずは [1] A,Bがともに鋭角の場合, [2] A が鈍角の場合, [3] B が鈍角の場合の3つの場合に分けて考えよう。 [1] A,Bがともに鋭角の場合 H 頂点Cから辺AB またはその延長線上に垂線 CHを下ろして △CBHに三平方の定理を用いると,どの場合も α2=CH2 + BH2…… ① になっているわ。 その通り。 では次に, CH と BH がどんな式になるかを 調べてみよう。 まずCH については, [1], [2], [3] の各場合に分けて考えると [1] の場合 CH=ア [2] の場合 CH= イ [3] の場合 CH = ウ となるね。 次にBH について [1], [2][3] の各場合に分けて考えると, [1] の場合 AH= エ であるから BH=オ [2] の場合 AH=カ であるから BH = キ [3] の場合 AH=ク であるから BH = ケ となるね。 :よくできました! このCH と BH の式を①に代入して 整理すると, [1]~[3] のどの場合でも (*) が導けるよ。 あとは, [4] A が直角の場合, [5] B が直角の場合を考えると どんな ABCに対しても(*)が成り立つことが証明できるね。 = [4] の場合 2bccosA=| [5] の場合 2bccosA=サ となるから (*) は成り立つね。 = 2人ともよくできました。 何気なく使っている公式も証明方法を知っておくと 知識の幅が広がるので、 数学を学ぶ上では重要になります。 H 4 B サ に当てはまる最も適当なものを、次の各解答群の ■から1つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 カ クの解答群 cos A 0-bcos A ② acos B -acos B④ bsin A ) キ 1 [2] A が鈍角の場合 [3] B が鈍角の場合 C 1 コ 1 の解答群 +bcosA @c-bcosA ②-c+bcos A ③-c-bcosA 566 4 ① の解答群 01 0-1 ③2c2④c⑤2c2 0 4 2 H ケ I 0 J ① 3

回答募集中 回答数: 0