学年

教科

質問の種類

数学 高校生

導関数の最大最小の問題です 最後の最大最小のまとめ方がなぜこうなっているのかが分かりません。x=2で最小値-4などはどこから来たのでしょうか。 教えて頂きたいのです よろしくお願いします🙇‍♀️

416 例題 234 関数の最大・最小〔5〕・・・係数に文字を含む よびそのときのxの値を求めよ。 a>0とする関数f(x)=x-3ax 0≦x≦3) の最大値と最小値, お 思考プロセス Re Action 関数の最大・最小は, 極値と端点での値を調べよ 例題228 f'(x)=3x-6ax=3x(x-2a) であり aの値が大きくなるとき, グラフ全体が平行移動するのではなく, 極小値をとるx (2a) が右側へ動いていく。 問題を分ける 最大値と最小値を同時に考えるのは難しいから, 分けて考える。 (極小となる点を 区間に含む 最小値 最大値 x f'(x) + f(x) > 0 0 極小となる点を 区間に含まない / ・・・・・ (最小値)=(極小値) /区間の両端での 値の大小を考える f'(x)=3x²2-6ax=3x(x-2a) f'(x) = 0 とすると x=0, 2a よって, f(x) の増減表は次のようになる。 YA 0 2a 0 + -4a³7 ゆえに,y=f(x)のグラフは右の図。 最小値について (ア) 3 <2a すなわちa> f(x)はx=3のとき 最小値 27-27a - f(x) は x = 24 のとき 最小値-4 3 12/2のとき 3 (イ) 20≦3 すなわちaso2 のとき *** /区間の両端での 値の大小を考える 境界となる 両端の値が等しいときを考える 0 U 0 -4a³ 2a x 2a 3 D YA O 2a N dara 2a a>0 より 2 > 0 S 極小となるx = 24 を区 間 0≦x≦3に含むかど うかで場合分けする。 3 245 = (- 次に, 最大値について f(x)=f(0) となるxの値は x-3ax² = 0 より x2(x-3a) = 0 よって (ア) 3 <3a すなわちa>1 のとき f(x)はx=0のとき 最大値 0 x = 0, 3a (イ) 3a = 3 すなわちα=1のとき f(x) は x = 0, 3のとき 最大値 0 (ウ) 34 <3 すなわちa <1のとき f(x)はx=3のとき 最大値 27-27a a=1のとき 1<a ≤ 3 2 3 2 R O <a のとき -4a³ ------ 0 3a 0 3a3 以上より, f(x) の最大値と最小値,およびそのときのxの 値は ( 8 (0<a<1のとき 2a のとき x=0で最大値 0 x 3.3g 3 x=3 で最大値 27-27a x=2で最小値-4c x = 0, 3 で最大値 0 x=2で最小値 4 x=2αで最小値-4α x=0で最大値 0 x=3で最小値 27-27a 最大値となり得る極大値 f (0) = 0 と等しい値をと るxの値を求める。 p.407 Go Ahead 16 の内 容を用いて, x = 3g を確 認できる。 (Svarar 1 aaa 0 2a 3a x=3g を区間0x3 に含むかどうかで場合分 けする。 (ア) (イ) の最大値は一致 するが、 最大値をとるx の値が異なるから, 分け て考える。 分かりやすいように, 最 後に, 最大値と最小値を まとめる。 Point... 定数を含む関数の最大・最小・ 例題234 において、 場合分けを考えるとき, 固定された区間 0≦x≦3に対して, グラ フを x = 24 や x=3α に着目し伸縮させて考 えた。 (最小値) (ア) 見方を変える 右の図のように、グラフを固定して,区間の端 点x=3を相対的に動かしても考えやすい。 (イ) (最大値) (ア)(イ) (ウ) HUN 0 32a 0 3 3a3 5章 14 導関数の応用 練習 234a>0とする。 関数 f(x)=x-342x (0 ≦x≦1) の最大値と最小値, およ びそのときのxの値を求めよ。 p.430 問題234 41

回答募集中 回答数: 0
数学 高校生

なんでlimを求めてるのかわからないです。あと、どういう時に求めればいいのかも教えて欲しいです。

基礎問 150 82 媒介変数で表された関数のグラフ 第5章 微分法 ay平面上で媒介変数日を用いて れる曲線C上の点Pにおける接線がx軸の正方向と (1) Cのグラフをかけ. (1) 00<2πのとき, dr dy -=1-cos0, de do 64で求めたdr (2) 直線とx軸の正方向とのなす角をaとすると(ただし, の直線の傾きは tanα で表せます. (数学ⅡI・B58) lim 0+0 dx (1) 媒介変数で表された関数の微分については 64 で学びました。 ここでは,それを用いてグラフをかく練習をしましょう。最大の ヤマは増減表のかき方です。 解答の中では,スペースの関係上、 をそのまま (途中を省略して)使ってあります。 また, dr よって, グラフは上に凸. dy また,dx -=0 より dy=lim lim dy 0-2-0 dx = sino より 1 (1-cos0)² =lim 解答 1-cos0>0 だから, 増減は右表のよう になる.また, 0+0 1-cos²0 -<0 sin0(1+cos0 ) x=0-sin0 y=1-cos 0 (2) 点Pの座標を求めよ。 0 1+cost_ 0 -=lim sin(2n+t) -0 1-cos (27+t) dy sino dx sin0=0 ∴.0=π (0<<2π より ) -= +00 1-cos 0 0 to sino 0-2=t とおくと, 02-0のとき, t→ - 0 IC (0≤0≤2π) ** 昔の角をなすとき、 dy dx y 20 0 0 -<-<4) + 2そ 注参照 [64 π 150 (5) π + 0 2 :: ... 270 π 6 =lim Sint dy_ do dx dx do だから (0,0), (2π, 0) において曲線Cは それぞれ直線 = 0, π=2πに接する。 以上のことより, グラフは右図 90 と2のときをはずして微分しているのは、この2つの [注] 対して, dx -=0 となるからです。 do dy <0+ --o-cost よって, 演習問題 82 t to sint =lim dy lim 0+0 dx¹ (2)0<6<2πにおいて ポイント その影響で, 00 と2のときのグラフの様子がわからないので, dy lim を調べてあるというわけです。 0-2-0 dx sino π = tan 7 1- cos 0 6 √√3 sin 0+cos0=12sin 1+cost t dx は -≠0 のときに使うことができる式です。 do π 13л -< 6 6 P(21 12 3/4 より ot=5 π5 0+ 6 √3 3 2' 2 2. 傾きは tan √3 sin0=1-cos A 2 sin(8+4)=1 ある直線がx軸の正方向とαの角をなすとき (一匹<a<△)で表せる 151 xy平面上で媒介変数tを用いて, x=√3-1 y=t³-t (−1 <t<1) で 表される曲線上の点P(x,y) における接線の傾きが0になるとき, 点Pの座標を求めよ. 第5章

回答募集中 回答数: 0