数学
高校生

なんでlimを求めてるのかわからないです。あと、どういう時に求めればいいのかも教えて欲しいです。

基礎問 150 82 媒介変数で表された関数のグラフ 第5章 微分法 ay平面上で媒介変数日を用いて れる曲線C上の点Pにおける接線がx軸の正方向と (1) Cのグラフをかけ. (1) 00<2πのとき, dr dy -=1-cos0, de do 64で求めたdr (2) 直線とx軸の正方向とのなす角をaとすると(ただし, の直線の傾きは tanα で表せます. (数学ⅡI・B58) lim 0+0 dx (1) 媒介変数で表された関数の微分については 64 で学びました。 ここでは,それを用いてグラフをかく練習をしましょう。最大の ヤマは増減表のかき方です。 解答の中では,スペースの関係上、 をそのまま (途中を省略して)使ってあります。 また, dr よって, グラフは上に凸. dy また,dx -=0 より dy=lim lim dy 0-2-0 dx = sino より 1 (1-cos0)² =lim 解答 1-cos0>0 だから, 増減は右表のよう になる.また, 0+0 1-cos²0 -<0 sin0(1+cos0 ) x=0-sin0 y=1-cos 0 (2) 点Pの座標を求めよ。 0 1+cost_ 0 -=lim sin(2n+t) -0 1-cos (27+t) dy sino dx sin0=0 ∴.0=π (0<<2π より ) -= +00 1-cos 0 0 to sino 0-2=t とおくと, 02-0のとき, t→ - 0 IC (0≤0≤2π) ** 昔の角をなすとき、 dy dx y 20 0 0 -<-<4) + 2そ 注参照 [64 π 150 (5) π + 0 2 :: ... 270 π 6 =lim Sint dy_ do dx dx do だから (0,0), (2π, 0) において曲線Cは それぞれ直線 = 0, π=2πに接する。 以上のことより, グラフは右図 90 と2のときをはずして微分しているのは、この2つの [注] 対して, dx -=0 となるからです。 do dy <0+ --o-cost よって, 演習問題 82 t to sint =lim dy lim 0+0 dx¹ (2)0<6<2πにおいて ポイント その影響で, 00 と2のときのグラフの様子がわからないので, dy lim を調べてあるというわけです。 0-2-0 dx sino π = tan 7 1- cos 0 6 √√3 sin 0+cos0=12sin 1+cost t dx は -≠0 のときに使うことができる式です。 do π 13л -< 6 6 P(21 12 3/4 より ot=5 π5 0+ 6 √3 3 2' 2 2. 傾きは tan √3 sin0=1-cos A 2 sin(8+4)=1 ある直線がx軸の正方向とαの角をなすとき (一匹<a<△)で表せる 151 xy平面上で媒介変数tを用いて, x=√3-1 y=t³-t (−1 <t<1) で 表される曲線上の点P(x,y) における接線の傾きが0になるとき, 点Pの座標を求めよ. 第5章

回答

まだ回答がありません。

疑問は解決しましたか?