学年

教科

質問の種類

数学 高校生

-1<X二乗+X+1分の1 で計算しようとしたらX<-1 ,0<Xと言う答えが出ません 何故ですか? -1<X二乗+X+1分の1 は正の数と示してるから不等号の向きは変化しなく、どちらで計算しても合うはずと思ったのですが、、

を示せ。 ■に, そ 基本事項 7 acxcbに 触をもつ ら連 見つ をも も連 f(x) x 区間 であ 基本 重要 例題 x は実数とする。無限級数 x²+x+ 118 級数で表された関数のグラフと連続性 x2+x x2+x x2+x+1 (x2+x+1)2 + x2+x+1 について,次の問いに答えよ。 この無限級数が収束するようなxの値の範囲を求めよ。 (2) x (1) の範囲にあるとき、この無限級数の和をf(x) とする。関数 y=f(x)のグラフをかき, その連続性について調べよ。 |基本 100, 116 CHARTO COLUTION CENT= (1) 無限等比級数 Σar-n-1 の収束条件はa=0 または -1<r<1 00 n=1 rol STR C (1) この無限級数は,初項x2+x,公比x2+x+1 1 級数である。 収束するための条件は -<1 x2+x+1 x2+x= または -1< x2+x=0 すなわち x(x+1)=0 から x = -1,0 また,x+x+1=(x+2/12 ) 2012/30 であるから 1 -1<- は常に成り立つ。 x2+x+1 和は α=0 のとき 0, -1<r<1 のとき a 1-r (2) f(x) を求めてグラフをかき, 連続性を調べる。 x2+x>0 以上により、求めるxの値の範囲は (2)x10 のときf(x) = 0 x<-1,0<xのとき ・+・・・・・・+ f(x)=- ゆえに, グラフは右の図のようになる。 って x2+x (x²+x+1)n-1 x2+x 1-- ゆえに x<-1,0<x x-1,0≦x の無限等比 x2+x+1 < 1 から x(x² + x + 1) +...... [類 東北学院大 ] =x2+x+1 x<-1,0<xで連続;x=-1,0で不連続 1 |-|< =²+²+| (x²+x+1)< L x² + x² > -2 初項が 0 または 1 <公比 < 1 1 < x²+x+1 1 -1 0 3 col-t 4 187 なんで答え 異なる?? x 1 PRACTICE... 118 x は実数とする。 次の無限級数が収束するとき, その和をf(x) と 3 する。関数 y=f(x) のグラフをかき, その連続性について調べよ。 4章 12 関数の極限

回答募集中 回答数: 0
数学 高校生

赤い丸で囲んであるところが全くわからないです…💦

重要 例題 232 媒介変数表示の曲線と面積 (2) 媒介変数tによって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 PALER CH CHART 解答 図から, 0≦t≦↑ では常に y≥0. また OLUTION 基本例題228 では,t の変化に伴ってxは常に増加 したが, この問題ではxの変化が単調でないとこ ろがある。 右の図のように、 t=0 のときの点をA, x座標が 最大となる点をB (t=to でx座標が最大になると する), t=π のときの点をCとする。 この問題では点Bを境目としてxが増加から減少 に変わり, x軸方向について見たときに曲線が往 復する区間がある。 したがって, 曲線 AB をy, 曲線 BC を とすると, 求める面積Sは CONTO S=Synx Synx と表される。・・・・・ 2008 y=2sint-sin2t=2sint-2sintcostanial =2sint(1-cost) よって, y=0 とすると 0≦t≦x から t=0, π 次に, x = 2cost-cos 2t から dx dt -=-2sint+2sin 2t =-2sint+2(2sintcost) =2sint(2cost-1) 0 <t<π において 1 FAVO dx - = 0 とすると, sint> 0 から dt 「 cost=- ゆえに π t=₁ よって、xの値の増減は右の表のようになる。 sint = 0 または cost=1+sajest 15 0<a Fachs C In t dx dt x よって,xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式 を立てる。また,定積分の計算は,置換積分法によりxの積分からの積分に直 して計算するとよい。 -3 t= を求めている。 y2 0 0 1 0000 y₁ 13 S 曲線が往復 している区間 (小 ... yA + 0 Hinf. 0≦t≦π のとき sint≧0,cost≦1 から y=2sint(1-cost) 20 としても,y≧0 がわかる。 0 A 1 t=0+ π 3 0 3 2 基本 228 *** •B TI [] t=to π 0 -3 ゆえに, osts におけるy をyi, sts におけるyを X=- 20030-caso =2-1 [ ] とすると, 求める面積Sは s=S²¸y=dx−Svidx ここで、0≦ osts において、 x=1のとき t=0, であるから また、において x=2のとき 一 であるから よって 3 x= のとき S² vidx=Sy dx ここで dt dt x=3のときt=" S²¸yzdx=Syddt t=7 s-Syndx-S² vndx-Syddi - Sydd dt dx -Sidedt + Sy dr dt-Sydx dt =S(2sint-sin2t)(−2sint+2sin2t)dt = S-2s -2sin22t+6sin2tsint-4sin't)dt =2f (sin2t-3sin2tsint+2sint)dt 4t sin 2t dt-S¹-cost dt-t-sin 4- ・dt=- 2 (3sin2tsintdt-3" 2 sint cost-sintdt EES S2 sintdt=2^1-69824dt=[1-1/2 sin24] 月 sin'tdt=2f"1-cos2tat=| =1 S= = -65 sint cost dt = 65" sinºt(sint)dt = 6-sin't] =0 =6 Y -3 注意 と は,xの式と しては異なるから |Sydx-vidx=S_¸ydx としてはいけない。 一方の式としては同じ y=2sint-sin2t) で表さ れる。 355 Sf(x) dx = -f(x) dx Sf(x) dx + f(x) dx -Sof(x)dx ← S₁ƒ (x) dx = -S₁ƒ (x) dx 1-cos 20 2 inf. 積和の公式から 3sin2tsintdt sin'0= ---√ (cos (cos 3t-cost)dt -sin 3t- =0 したがってS203 としてもよい。 [inf. この例題の曲線は, カージオイドの一部分である(p.103 補足参照)。 Tri y PRACTICE・・・・ 232 ④ 媒介変数tによって, x=2t+t, y=t+212 (-2≦t≦0) と表される曲線と, y軸で 囲まれた図形の面積Sを求めよ。 ds de 8章 25 20

回答募集中 回答数: 0
数学 高校生

[1]なぜ最後の一文で −1−iとその共役複素数が一致する という文がいるんですか?? 横に書いてある 点pが点ABに一致する場合と書いてありますが,理解できませんでした

重要 例題 31 直線の方程式 αを複素数の定数とする。 (1), (2) の直線上の点Pを表す複素数zは,等式 az+az-2=0 を満たす。 αの値をそれぞれ求めよ。 (1) 2点A(-1), B (1+2ź) を通る直線上の点P (2) 中心が (2+3) 半径が2√2 の円周上の点 D (i) における接線上の点P 基本 28 CHART SOLUTION 異なる3点A(a), B(B), P(z) について 3点A, B, P が一直線上にある⇔ 2直線AB, AP が垂直に交わる k-a B-αが実数 解答 (1) 3点A,B, Pは一直線上にあるから, z−(−1) z+1 は実数である。 1+2i-(-1)^2+2i z-a (1) β-a (2) 接線半径であるから, 2直線 CD, DP は垂直に交わる。 z+1 ゆえに 22 22 すなわち z+1 2+2i 2+2i i zi zi (2) CD ⊥DP であるから, 2+3i-i 2+2i ゆえに 両辺に (1−i) (1+i) を掛けて 整理して (−1+ i)z+(1+i) 両辺にえを掛けて共律系)(i+1)+2=0 よって(-1-1)+(-1+7z-2=0 -1+i=-1-i であるから α=-1+i 2+2i 2+2i/. + (2) -0かつ z-it 1+i z+i. 1-i -=0 すなわち ① の両辺に (1+i) (1−i) を掛けて z-a B-a 整理して 1+ i = 1 -i であるから PRACTICE... 31③ 1 + z-a が実数 B-a z+1 +1 1-i 1+i (1+i)(z+1)=(1-i)(z+1) +2i = 0 α= 2 6 zia B-a スーi 2+2i ① かつスキi が純虚数 #0 (1-i)(z-i)+(1+i)(2+i)=0 (1−i)z+(1+i)z-2=0 (z=i のときも成立) は純虚数である。 A YA 2 -101 B 3 D 0 ◆点Pが点A, Bに一致 する場合も含まれる。 Ay P. C 2 53 18 ◆点Pが点Dに一致する 場合も含まれる。 a=1+i 3i とし, 複素数 1,α に対応する複素数平面上の点をそ 複素数を用いて, 方程式 βz +βz +1=0 で表さ 1章 複素数と図形

回答募集中 回答数: 0
数学 高校生

A→Pまでの場合分けについて教えてください🙇🏻‍♀️‪‪

り! 4連勝した が決まる。 クゲーム目に 20 のどちら ◯加法定 コーバ 重要 例題 48 平面上の点の移動と反復試行 右の図のように,東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通っ て地点Bへ向かう。このとき,途中で地点Pを通る 確率を求めよ。ただし,各交差点で,東に行くか, 北に行くかは等確率とし,一方しか行けないときは 確率1でその方向に行くものとする。 CHART O SOLUTION 最短経路 道順によって確率が異なる A→P→Bの経路の総数 A→Bの経路の総数 4C3X1 6C3 これは,どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって確率が異なる。 例えば, 111 1 22 22 求める確率を A↑ →→→P↑↑B の確率は 1回目の当 A→→→↑P↑↑B の確率は 解答 右の図のように,地点 C, C', P'をと る。 P を通る道順には次の2つの場合 があり,これらは互いに排反である。 [1] 道順A→C→C→P→Bの場合 この確率は 1/2x1/x/1/2×1×1×1=1/28 [2] 道順A→P'→P→Bの場合 この確率は sc (12/2(1/2)×1/1×1×1=1/16 3 1: 3C 5 よって、求める確率は 1/3+1/6=1 8 から, 1 1 1 22 2 8 よって, P を通る道順を, 通る点で分けて確率を計算する。 3 ·1·1: ・・1・1・1= 1 16 1 C' B P P C PRACTICE・・・・ 48 ③ 右の図のように、東西に4本、南北に5本の道路がある。地 点Aから出発した人が最短の道順を通って地点Bへ向かう。 このとき,途中で地点Pを通る確率を求めよ。ただし、各交 差点で、東に行くか、北に行くかは等確率とし,一方しか行 けないときは確率1でその方向に行くものとする。 とするのは誤り! A | A A 確率の加法定理。 B P P | 基本 27,46 ◆C→Pは1通りの道順 であることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○→↑↑と進む。 ○には2個と↑1個 が入る。 北 P B 北

回答募集中 回答数: 0
英語 高校生

これをといてもらえるとありがたいです。

Grammar Practice 例を参考に、以下の語句を使って1~10のセンテンスを完成させなさい (文頭は大文 字にしなさい)。 everyone herself its them everything him one we he his our you her it ours and yourself 3. The design for the product is (0) manufacture ( hers it their 例 The financial year ends in March, so (everyone) must work hard. 会計年度は3月で終わるので誰もが一生懸命に働かなければならない。 1. Gap was established as a small store in 1968. Now ( global company. ギャップは1968年に小売店として開店した。 今ではグローバル企業である。 2. (hamnar dini aradusi b) dream of becoming entrepreneurs has finally come true. 彼らの企業家になる夢がやっと実現した。 ), but another company will ). ‚2'blnmo¤¤M Yoman a'inemERSI その製品のデザインはうちのものであるが、 製造は他社がすることになる。 4. After the 1990s many Japanese banks merged, and many of( have become mega-banks. mo) is a 1990年代以後、日本の銀行は合併し、そしてそれらの多くはメガバンクになった。 5. The customer went to talk to the company's sales manager (dowl aft S) about ( ) return policy. その消費者は返品の方針についてじかに販売部長に話しに行った。 6. ( olci ) company is listed on the Tokyo Stock Exchange. Fifty-one percent of the stock is ( ). 彼女の会社は東京証券市場に上場している。 51パーセントの株は彼女のものである。 7. The president wants to control ( ). Now most decision making is done by ( 社長は何でも支配したい。 こうなると、ほとんどの意思決定は彼によってなされる。 8. The senior manager was transferred to a local branch in Okinawa. ( ) has to live away from (insinqiupa) family now. 次長は沖縄の支店に異動になった。 彼は今では家族と離れて暮らさなければならな い。 9. To be a good businessperson, ( ). よいビジネスマンになるには自分のことを信じなければならない。 |||| ) have to believe in 7

回答募集中 回答数: 0
数学 高校生

n群が含む項数は2^n-1だから(2)2^k-1ではなく2^k-2ではないのですか?なぜこうなるのか教えてください。

384 基本例題 23 群数列の基本 1から順に自然数を並べて,下のように1個,2個 4個, うに群に分ける。 ただし,第n群が含む数の個数は2個である。 1/2, 3/4, 5, 6, 7/8, (1) 第5群の初めの数と終わりの数を求めよ。 (2) 第n群に含まれる数の総和を求めよ。 CHART & SOLUTION 群数列の基本 第群の最初の項や項数に注目 例題のように、群に分けられた数列を 群数 列という。 (1) 第4群の末頃までの項の総数をNと 区切りを入れる と分け方の規則 がみえてくる ...... k=1 解答 1+2+2+2=15 (1) 第4群の末項までの項の総数は 第5群の末頃までの項の総数は よって、 第5群の初めの数は 16, 終わりの数は31 1+2+2²+2³+2¹=31 (2) n≧2のとき,第 (n-1) 群の末頃までの項の総数は (-16) E 2²-1-2-1-1 n-1 2-1 =2n-1-1 ゆえに,第n群の初めの数は (2'-'-1)+1 すなわち 27-1 これは n=1のときにも成り立つ。 “ よって、第群に含まれる数の総和は,初項が2"-1, 公差 が 1 項数が27-1 の等差数列の和となるから 求める和は 1/1・2"-1(2・2"^'+(2"''-1)・1}=2"-2(3・2"--1) もとの数列 類 京都産大] となるよ 群数列 すると, 第5群の初めの数は, 自然数の列の第 (N+1) 項である。 また, 自然数の列の第 項の数はとなる。 (2) 連続する自然数の和であるから公差1の等差数列の和で,あとは初項と項数がわか ればよい。初項は (1) と同様にして求まる。 項数は問題文から,すぐにわかる。 区切りをとると もとの数列の規 則がみえてくる EAST C 重要 24 n-1 2-1 は,初項1,公比 A=1 2の等比数列の初項か ら第 (n-1)項までの和。 別解 第n群の終わりの数 は2-1であるから、私は 11/12.2°-12"-' + (2^-1 = 2²-²(3-2-¹-1) PRACTICE 23② 正の奇数の列を次のように,第n群が (2n-1) 個の奇数を含むように分ける。 1/3,5,79, 11. 13 15 1710 辞各 群 各 群

回答募集中 回答数: 0
数学 高校生

基本問題の例題(2)がしょうなりいじょう7になってるけど practice33の(2)は<21になってるんですけどどういう意味で違うんですか?教えて欲しいです。

PR ③33 (1) 不等式x+1/18/1/2x-12/2 を満たす正の奇数xをすべて求めよ。 6 3 (2) 不等式 5(x-a)-2(x-3) を満たす最大の整数が2であるとき,定数aの値の範囲を求 めよ。 (11/03/12/12/28 x一 6 x+ 整理して -4x>-28 よって x <7 これを満たす正の奇数xは 1,35 6x+1>10x-27 (2) 5(x-a)s-2(x-3) 5 xs- ① を満たす最大の整数が2となるのは 5a+6 25 43 74 のときである。 ゆえに 14≦5a+6<21 よって CHART & THINKING 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1) 2桁の自然数x≧10 5a +6 7 解答 (1) 6x+8(6-x) > 7 から 41 x < -=20.5 ゆえに Sa+6 3 7 ①を満たす最大の整数 xは2桁の自然数であるから 10≤x≤20 求める自然数の個数は 567X のときである。 ゆえに 1 <2a≦2 よって 12/2<as1 +86-x) を満たす2桁の自然数xの個数を求めよ。 基本 29.32 (2) 不等式 5(x-1)<2(2x+α) を満たすxのうちで, 最大の整数が6であ るとき,定数aの値の範囲を求めよ。 x の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 は x<A を満たすが,x=7 は x=6 x<A を満たさないことが条件となる。 -2x>-41 両辺に6を掛けて分母 を払う。 10 11 範囲を 10≦x≦n の形に表す。 この不等式を満たす整数の個数は? 2桁 7は含まれない。 SC ◆展開して整理。 (2) 不等式の解は x<A の形となる。 数直線上でAの値を変化させ, x <A を 20-10+1=11(個) (2) 5(x-1)<2(2x+α) から x2a +5 / ••・・・ ① ①を満たすxのうちで最大の整数が6となるのは 114 6<2a+57 2< これと不等式の解を合わせて、条件を満たす整数xの他の 20 41 2 5a +6 7 25+6 3 などとし 7 ないように等号の有無に 注意する。 -<3 とか 21 x 2a+5 7 ①を満たす最大の整数 x を満たす最大 A ◆展開して整理。 不等号の向きが変わる。 ◆解の吟味。 ◆展開して整理。 6<2a+5<7 とか 6≦2a+57 などとし ないように。 等号の有 無に注意する。 a=1 のとき, 不等式

回答募集中 回答数: 0