数学
高校生

[1]なぜ最後の一文で
−1−iとその共役複素数が一致する

という文がいるんですか??

横に書いてある
点pが点ABに一致する場合と書いてありますが,理解できませんでした

重要 例題 31 直線の方程式 αを複素数の定数とする。 (1), (2) の直線上の点Pを表す複素数zは,等式 az+az-2=0 を満たす。 αの値をそれぞれ求めよ。 (1) 2点A(-1), B (1+2ź) を通る直線上の点P (2) 中心が (2+3) 半径が2√2 の円周上の点 D (i) における接線上の点P 基本 28 CHART SOLUTION 異なる3点A(a), B(B), P(z) について 3点A, B, P が一直線上にある⇔ 2直線AB, AP が垂直に交わる k-a B-αが実数 解答 (1) 3点A,B, Pは一直線上にあるから, z−(−1) z+1 は実数である。 1+2i-(-1)^2+2i z-a (1) β-a (2) 接線半径であるから, 2直線 CD, DP は垂直に交わる。 z+1 ゆえに 22 22 すなわち z+1 2+2i 2+2i i zi zi (2) CD ⊥DP であるから, 2+3i-i 2+2i ゆえに 両辺に (1−i) (1+i) を掛けて 整理して (−1+ i)z+(1+i) 両辺にえを掛けて共律系)(i+1)+2=0 よって(-1-1)+(-1+7z-2=0 -1+i=-1-i であるから α=-1+i 2+2i 2+2i/. + (2) -0かつ z-it 1+i z+i. 1-i -=0 すなわち ① の両辺に (1+i) (1−i) を掛けて z-a B-a 整理して 1+ i = 1 -i であるから PRACTICE... 31③ 1 + z-a が実数 B-a z+1 +1 1-i 1+i (1+i)(z+1)=(1-i)(z+1) +2i = 0 α= 2 6 zia B-a スーi 2+2i ① かつスキi が純虚数 #0 (1-i)(z-i)+(1+i)(2+i)=0 (1−i)z+(1+i)z-2=0 (z=i のときも成立) は純虚数である。 A YA 2 -101 B 3 D 0 ◆点Pが点A, Bに一致 する場合も含まれる。 Ay P. C 2 53 18 ◆点Pが点Dに一致する 場合も含まれる。 a=1+i 3i とし, 複素数 1,α に対応する複素数平面上の点をそ 複素数を用いて, 方程式 βz +βz +1=0 で表さ 1章 複素数と図形

回答

まだ回答がありません。

疑問は解決しましたか?