学年

教科

質問の種類

数学 高校生

青チャート数2b 21の解説について。段取りはわかったのですがなぜanx^n-1という最高次数の項と2xが比較されているのでしょうか?恒等式というのは存じているのですが、g(x)の中に同じ次数を持ったやつがいる可能性はないのですか? 申し訳ないです。解説お願いします。

重要 例 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x)が2次式とわかっていれば, f(x)=ax2+bx+cとおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x)はn次式であるとして, f(x)=ax+bx-1+.. (a=0, n ≧1) とおいて 進める。 f(x+1)f(x)の最高次の項はどうなるかを調べ,右辺2x と比較するこ とで次数 n と係数 α を求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=c (cは定数) とすると, f(0) = 1から f(x)=1 解答これはf(x+1)- f(x)=2.x を満たさないから,不適。 よって, f(x)=ax+bxn-1+... ると (a≠0, n ≧1)(*) とす f(x+1)f(x) ...... =a(x+1)"+6(x+1)"'+......-(ax+bx"-1+.....) =anx-1+g(x) ただし, g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して n-l=1 ...... ..0, an=2 ..... ....... よって 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 ② b+1=0 基本 15 この場合は, (*)に含ま れないため、別に考えて いる。 ◄(x+1)" ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)^+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nCix"-1+nC2x"-2+... のうち, a(x+1)+1-ax” の最高 次の項は anxn-1 で 残 りの頃はn-2次以下と なる。 <anxn-1と2x の次数と 係数を比較。 係数比較法。 POINT 次数が不明の多項式は,n 次と仮定して進めるのも有効

回答募集中 回答数: 0
数学 高校生

(2)はなぜ場合分けをするのかがわからないです!

不等式がす つ条件 (絶対不等式) 日本 例題 109グラフ 22:10基本軍) (英国 125, 基本例題 p.159 基本事項6 (1) すべての実数xに対して, 2次不等式 x2+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax²-2√3x+a+2≦0が成り立つような定 数αの値の範囲を求めよ。 指針 2次式の定符号a≠0 D=62-4ac とする。 ········· #kax²+bx+c>0⇒a>0, D<0 #kax²+bx+c≥0⇒a>0, D≤0 常に ax²+bx+c<0⇔a<0, D<0 常に ax2+bx+c≦0⇔a<0, D≦0 (1) x^2の係数は 1(正) であるから, D<0が条件。 (2) 単に「不等式」とあるから a=0(2次不等式で ない)の場合とa=0 の場合に分ける。 演習 00000 a=0のとき, ax²-2√3x+a+2=0の判別式をDとす ると、常に不等式が成り立つための必要十分条件は a<0 かつD/4=(-√3)a(a+2)≦0は a < 0 かつ a2+2a-3≧0 (a+3)(a-1)≧0 BIKEOL すなわち a²+2a-3≧0から よって 1≦a ≦-3, a<0 との共通範囲を求めて a≤-3 8> 解答 の係数が1で正であるから、常に不等式が成り立 | 「すべての実数x」または「任意の実 つための必要十分条件は,係数について (k+3)²−4•1•(−k)<0 よって (+9)(k+1)<0 ゆえに k² +10k +9 < 0 ゆえに-9<k <-1 数x」 に対して不等式が成り立つと は、その不等式の解が,すべての実 数であるということ (2)a=0のとき,不等式は-2√3x+2≦0 となり,例え ばx=0のとき成り立たない。 + [a>0, D<0] X 0<0+ x [ a < 0, D<0] 19 = (1) の D<0は,下に凸の放物線が常 にx軸より上側にある条件と同じ。 20> (1) -2√3x+2≦0の解はx≧ ²7/3² √√3 CIAN またはx グラフがx軸に接する. 軸より下側にある条件と同じであ D 4 るから. <0 <0ではなく10と 4 する。 5 2章 13 2次不

未解決 回答数: 0
数学 高校生

共通テスト/数学2B/第2問 タ の解き方を教えて頂きたいです。 よろしくお願いします🙇‍♀️

y = 第2問 (必答問題) (配点 30 ア [1] 太郎さんは、ボールをゴールに蹴り込む ゲームに参加した。 そのゲームは、 右の図1のように地点Oか ら地点Dに向かって転がしたボールを線分 OD 上の一点からゴールに向かって蹴り込み, 地点Aから地点Bまでの範囲にボールが飛 び込んだとき, ゴールしたことにするという ものであった。 13 B A 3m 1 ル xと表すことができる。 2m (第3回 7 ) 0 B そこで太郎さんは、どの位置から蹴るとゴールしやすいかを考えることにした。 地点Oを通り, 直線 ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは,Oを原点とし、座標軸を0からCの方向をx軸の正の方向。 OからBの方向をy軸の正の方向となるようにとり、点Pの位置でボールを蹴る ことを図2のように座標平面上に表した。 A ボールが転がされ、 ボールを蹴るライン 9m 図2 このとき, A(0, 2), B (0, 5) であり, ボールを蹴るラインを表す直線の方程式は 図1 3mi (数学ⅡI・数学B 第2問は次ページに続く。) 太郎さんは,最もゴールしやすいのは、∠APB が最大になる地点であると考 えた。 ∠APBが最大となる点Pの座標を求めよう。 Px, ア イ である。 方向となす角をそれぞれα, B (1/2<B<<<12/2)とする。 このとき tand= tan (α-β) (0<x≦9) とし、図2のように、 直線AP, BP がx軸の正の X ウ クケ x+ ∠APB=α-β と表され, APBが夢になることはないから, tan (a-β)を考 えることができる。 1 クケ さらに, tan (a-β)= シス x 5, tanβ = カキ x クケコサx+シス >0であるから, 0x≦9のとき tan (α-β)>0であ る。 コサx+ シス クケ x+ エオ カキ シス XC となり, は最小値 セソをとる。 以上のことから,点Pのx座標がタ コサ と変形でき, 0<x≦9の範囲で のとき, ∠APBは最大である。 (数学ⅡⅠI・数学B 第2問は次ページに続く。) (第3回 8 )

回答募集中 回答数: 0