学年

教科

質問の種類

生物 高校生

答えがないので全て解答教えて欲しいです

生物基礎分野 1学期中間試験 【1】 生物と非生物についてモトネ (妹)とユウコ (姉)の会話を読み以下の問に答えよ。 モトネ: 貝殻って、 生物ではないよね。 知 ユウコ: もとは生物だったけど、 今は生物ではないよ。 もし生物なら、 私たちが使っている 木の机だって生物になる。 モトネ:ネコやヒマワリ、シイタケ、エイズウイルス、大腸菌は生物ってことだよね。 ユウコ:エイズウイルスは、今の定義では生物には分類されないよ。中間的な存在だから。 モトネ: なんで? ユウコ:生物には共通した特徴があって、細胞を基本単位として、最外層には①か あり、細胞内と細胞外を隔てているんだよ。 モトネ:エイズウイルスには①がないんだね。 ユウコ : それに、すべての生物には②があり、②には遺伝情報が含まれている。 モトネ:ウイルスには、②がないってこと? ユウコ : アデノウイルスには②があるけど、エイズウイルスやインフルエンザウイルスに はないんだよ。 モトネ: ところで、 植物は光を使って何をつくっているの?。 ユウコ:b 植物は太陽の光エネルギーを用いてc 有機物をつくる。これを光合成という よね。これは簡単な物質から複雑な物質にする ③ という。 モトネ: その反対は? ユウコ:複雑な物質から簡単な物質にしてエネルギーを得ることを④という。呼吸もそ の例だよね モトネ: 植物も呼吸しているよね。 そのエネルギーって何? ユウコ : このエネルギーで合成される物質を⑤という。⑤の構造は、アデノシンに3 つの⑥がつながっている。 この⑥ と ⑥ の結びつきを モトネ:このエネルギーを利用することも生物にとって共通することなの?。 ユウコ: その通りです。 問1 文章中の1から ⑦に適する語を入れよ。 結合という。 問2 下線部 aについて、 1665年にコルクガシの樹皮から採取したものを顕微鏡で観察し、細 胞と名付けた研究者とは誰か、次のア~エから最も適当なものを1つ選び記号で答えよ。 アシュワン イシュライデン ウ フック エフィルヒョー 【2】 問3 下線部bについて、 植物の細胞を構成する物質で2番目に多い物質を次のア~オから 最も適当なものを1つ選び記号で答えよ。 相 ア 炭水化物 イタンパク質 ウ 脂質 水 オ 無機塩類 問4 下線部cについて、 炭素を含むものが有機物である。 次のア~オの中で有機物ではな いものをすべて選び記号で答えよ。 ただし、 ア~オがすべて有機物な場合は「なし」と 答えよ。 アデンプン イ 二酸化炭素 ウ RNA エ免疫グロブリン オ AD -1-

回答募集中 回答数: 0
数学 高校生

数IIサクシード 不等式の表す領域400 不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。

未解決 回答数: 1