学年

教科

質問の種類

数学 高校生

かっこ2のアで1-tとtを解答と逆にしてもいいと思いやってたのですが答えが合わないので計算途中をお願いしたいですよ

する(s, t |基本例題 34 直線のベクトル方程式, 媒介変数表示 00000 (1) 3点A(a),B(b),C(c) を頂点とする △ABC がある。 辺AB を2:3に内 分する点を通り,辺 ACに平行な直線のベクトル方程式を求めよ。 指針 2点(3,2) (2,-4) を通る直線の方程式を媒介変数を用いて表せ。 (イ)(ア)で求めた直線の方程式を, tを消去した形で表せ。 (1)点A(a)を通り,方向ベクトルの直線のベクトル方程式は p=a+td 40 67 1 p.65 基本事項 1 章 ここでは,Mを定点, AC を方向ベクトルとみて、この式にあてはめる (結果はa, もこおよび媒介変数を含む式となる)。 (2)2点A(a),B(b) を通る直線のベクトル方程式は b=(1-t)a+tb D=(x,y), a= (-3, 2) = (2,-4) とみて,これを成分で表す。 (1)直線上の任意の点をP(D) とし, tを媒介変数とする。 3a+26 A(a) ⑤ ベクトル方程式 解答 M (m) とすると m= P(p) 5 2 辺 ACに平行な直線の方向ベクトルはACであるから b=m+tAC=30+26+t(ca) M(m) 3 c-a t=0 B(b) C(c) 5 t=19 整理して b = (1/2/3 - ta1+1/26+1ctは媒介変数) 3a+26 +t(c-a) 5 でもよい。 LS) (2)2点(-322-4 を通る直線上の任意の点 の座標 (x,y) とすると (x,y)=(1-t)(-3, 2)+t(2,-4) =(-3(1-t)+2t, 2(1-t)-4t) =(5t-3, -6t+2) P(x, y), A(-3, 2), B(2,-4) とすると, OP= (1-t)OA+tOB と同じこと (Oは原点)。 各成分を比較。 x=5t-3 よって (tは媒介変数) ② とする。x=31 ① ×6+② ×5 から 6x+5y+8=0 tを消去。 ly=-6t+2 (イ) x=5t-3. ①,y=-6t+2 参考 数学IIの問題として, (2) を解くと, 2点 (-3, 2) (2, -4) を通る直線の方程式! -4-2 2+3 y-2= (x+3) から 6x+5y+8=0 練習 (1) △ABCにおいて, A(a),B(b),C(c)とする。 M を辺BC の中点とする 34 直線AMのベクトル方程式を求めよ。 博介変数で表された式, tを消去

回答募集中 回答数: 0
英語 高校生

投げやりです。すいません。英語皆無なので代行してください。

【必答問題 5 日常使う物のデザインをする際には標準化 (standardization) という方法がある。 という内容に続く次の英文を読んで、あとの問いに答えよ。(配点44) If we examine the history of advances in all technological fields, we see that some improvements come naturally through the technology itself, while others come through standardization. The early history of the automobile is a good example. The first cars were very difficult to operate. They required strength and skill beyond the abilities of many. Some problems were solved through automation. Other aspects of cars and driving were standardized through the long process of international standards committees: . On which side of the road to drive (constant within countries) country, but variable across On which side f the car the driver sits (depends upon which side of the road the car is driven) -The (2) of essential components: steering wheel, brake, clutch, and accelerator (the same, whether on the left- or right-hand side of the car) Standardization is one type of cultural constraint. With standardization, once you have learned to drive one car, you feel confident that you can drive any car, anyplace in the world. Standardization provides a major breakthrough in usability. I have enough friends on national and international standards committees to realize that the process f determining an internationally accepted standard is laborious. Even when all members agree on the merits of standardization, the task of selecting standards becomes a long, political issue. A small company can standardize its products without too much difficulty, but it is much more difficult for an industrial, national, or international body to agree to standards. There even exists a standardized procedure for establishing national and international standards. organizations works on standards. First, a set of national and international Then when a new standard is proposed, it must work its way through each organization's approval process. Standards are usually the result of a *compromise among the various competing positions, which can often be an inferior compromise. Sometimes the answer is to agree on (4 ). Look at the existence I both metric and *English units; of left-hand- and 18 right-hand-drive automobiles. There are several international standards for the *voltages and *frequencies of electricity, and several different kinds of electrical plugs and sockets- which cannot interchanged. With all these difficulties and with the continual advances in technology, are standards really necessary? Yes, they are. Take the everyday, clock. It's standardized. Consider how much trouble you would have telling time with a backward clock, where the hands revolved "counterclockwise." A few such clocks exist, primarily as humorous conversation pieces. When a clock truly violates standards, such as (the one in Figure 1, it is difficult to determine what time is being displayed. Why? The logic behind the time display is identical to that of conventional clocks: there are only two differences - the hands move in the opposite direction (counterclockwise) and the location of "12," usually at the top, has been moved. This clock is just as logical as the standard one. It. bothers us because we have standardized on a different scheme, on the very definition of the term clockwise. Without such standardization, clock reading would be more difficult: you'd always have to figure out the "mapping. E) compromise *metric メートル法の *English units イギリスの計量法(ヤードボンド法) *frequencies of electricity 電気の周波数 voltages E *mapping 対応づけ (2つのものの間の関係を意味する専門用語) 問1 下線部(1)の内容を、 同じ段落の自動車の例に基づいて30字以内の日本語で答えよ。た だし、句読点も字数に数える。 問2 本文中の空所 (2) に入る語として最も適当なものを、次のア~エのうちから一つ 選び 記号で答えよ。 7 color イ location ウ price I sight (239) 問3 第2パラグラフ (Standardization is one type of ...) について 次の Question に対す る Answer となるように、空所に入れるのに最も適当なものを,次のア~エのうちから一 つ選び、 記号で答えよ。 Question: What is "a major breakthrough in usability" provided by standardization? Answer Because of standardization, you ( device of the same kind all over the world. 7 can apply what you have learned to イ can make cannot produce I cannot use what you have learned when using 問7 下線部(5)が表す図 (Figure 1)として最も適当なものを、次のア~エのうちから一つ選 び記号で答えよ。 11 12 1 12 ) any machine or 10 2 10% 9 3 1 5 6 問4 下線部(3)の示す内容を, 40字程度の日本語で答えよ。 ただし, 句読点も字数に数える。 ウ 11 6 1 問5 次の文を第3パラグラフ (Ihave enough friends...) に入れるとき,本文中の①~ のうちのどの位置に入れるのが最も適当か、 次のア~エのうちから一つ選び, 記号 で答えよ。 9 3 Each step is complex, for if there are three ways of doing something, then there are sure to be strong proponents of each of the three ways, plus people who will argue that it is too early to standardize. 70 問8 最終パラグラフ (With all these difficulties...) の内容をもとに, 次の Question に2 語程度の英語一文で答えよ。 Question: According to the writer, why is the standardization of the everyday clo necessary? イ 2 ウ H O 問6 本文中の空所 (4) に入れるのに最も適当なものを、次のア~エのうちから一つ選び 記号で答えよ。 7 a single standard 1 several different standards ウ the same standard I too few standards <<-20-> <-21->

回答募集中 回答数: 0
数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
生物 高校生

問1なぜこの答えになるのか分かりません。 教えてください!!

ある植物では, 野生型に対して, 小さい葉をもつ系統, 光沢がある葉をもつ系統、 赤色の茎をもつ系統がある。これらの形質は,それぞれ1対のアレルにより決定され、 小さい葉(b), 光沢がある葉(g), 赤色の茎(r) のいずれの形質も野生型(それぞれB, G, R) に対して潜性である。 ( )内は,それぞれの遺伝子記号である。 いま,これらの3組のアレルの関係を調べるために, 赤色の茎をもつ純系の個体と、 小さくて光沢がある葉をもつ純系の個体を親として交配し, F1を得た。さらに,この Fi を検定交雑した結果が次の表である。 なお, 表現型の+はそれぞれの形質が野生 型であることを示す。 197 問1 (2) 問3 問5 角 問1 紅 問 問1 交配に用いた両親の遺伝子型を 答えよ。 表1 A 表現型 個体数 問2. 文章中の下線部について,次の (1),(2)に答えよ。 ② 小さい葉 ① 小さい葉 光沢がある葉 赤色の茎 光沢がある葉 237 + 232 問 (1) F1 および F の検定交雑に用い また個体の遺伝子型を答えよ。 ③ 小さい葉 + 赤色の茎 17 (4) + 光沢がある葉 赤色の茎 21 (2) 小さい葉 3組のアレルがすべて異なる相⑤ 染色体上に存在するものと仮定 + + 19 + 光沢がある葉 + 23 した場合, F, を検定交雑すると, 理論上どのような次代が得られる + + 赤色の茎 227 + + + 224 歌のか。 次代の表現型とその分離比を 合計1000 例にならって答えよ。 なお、表現型は表1の番号を用い, 分離比は最も簡単な整 数比で答えよ。 (例・・・ 1:2:④:⑧=1:1:2:2) 団

回答募集中 回答数: 0