学年

教科

質問の種類

数学 高校生

常用対数 (ィ)が分かりません( ˘•ω•˘ ).。oஇ どっからその数出てきたの?って感じです。 それも踏まえて回答いただけるとありがたいです😭よろしくお願いします🙇🏻‍♀️⸒⸒

6 基本 例 191 最高位の数と一の位の数 0000 12® は桁の整数である。 また, その最高位の数は で,一の はである。 ただし, 10g102=0.3010, log103= 0.4771 とする。 指針 (ア)(イ) 正の数Nの桁数は logie N の整数部分, 最高位の数は10gio N の小数部分に注目。 なぜなら, Nの桁数をkとし, 最高位の数をα (αは整数, 1≦a≦9) とすると Na+1) ・10400... 0 0 がん1個) からα99.9 (9がk-1個)まで logio (a10-1)log10N <10g10(a+1)・10^-1} 各辺の常用対数をとる。 k-1+logioalogoN <k-1+log10(a+1) login (4・10=logioa+logait よって, logio N の整数部分をp, 小数部分をg とすると logioag <logio (a+1) p=k-1, 1 () 121, 122, 123, ・を計算してみて,一の位の数の規則性を見つける。 (ア) 10g 10 126=601ogio (223)=60(210g102+10g103) =60(2×0.3010+0.4771)=64.746 10g1012=6010g 12 12=22.3 解答 ゆえに 64<log10 1260<65 よって 10641260 1065 (イ)(ア)から したがって, 1260 は 65 桁の整数である。 log1012=64+0.746 ここで 10g105=1-10g102 =1-0.3010=0.6990 10g106=10g102+10g10 3 =0.3010+0.4771=0.7781 ゆえに すなわち よって 10g105 < 0.746 <10g106 5<100.7466 5・10641064.7466・1064 すなわち 5.106412606.1064 したがって, 126 の最高位の数は 5 (イ)の別解(ア)から 1260=104.746=10 10° <10.745 < 10'であるか ら, 1074 の整数部分が 126 の最高位の数である。 ここで, 10g105=0.6990 から 100.69905 |10g 10 6 0.7781 から 100.7781-6 100.6990100.74610 から 51007466 (ウ) 12', 122 123 124 125, よって、最高位の数は の一の位の数は,順に 2, 4, 8, 6, 2, 60=4×15 であるから, 126 の一の位の数は となり, 4つの数 2, 4, 8, 6 を順に繰り返す。 122 (mod10) である から12" の一の位の 6 は、2” の一の位の数と同 じ。 ③ 191 然数で,nの値はn=である。また, 8” の一の位の数はウで最高位 練習 自然数nが不等式 38 ≦10g10 8” <39 を満たすとする。 このとき,8"は桁の る。 数はである。 ただし, 10g102=0.3010, 10g103=0.4771, logio7=0.8451と (関西学院 p.312 EX

解決済み 回答数: 1
数学 高校生

常用対数 これの(2)がなんで39桁になるかが分かりません( ˘•ω•˘ ).。oஇ 回答よろしくお願いします🙇🏻‍♀️⸒⸒

の最大値と最小値を求めよ。 本 188 常用対数を利用した桁数, 小数首位の判断 ①①①①① Ag2=0.3010,10gto3=0.4771 とする。 a lagio, logio 0.006, logiov/72 の値をそれぞれ求めよ。 は何桁の整数か。 100 小数で表すと、小数部位に初めてでない数字がれるか p.302 基本事項2 の累乗の積で表してみる。 なお,10g105の5は510÷2と考える。 (1) 底は10で, log102, 10g103の値が与えられているから,各対数の真数を2,310 3 2100 (2) (3) まず 10g 10 65, 10g10 を求める。 解 あり 解答編 .190 検討 参照。 正の数Nの整数部分が桁⇔k-1≦log10N <k 正の数 N は小数第k位に初めて0でない数字が現れる⇔k≦logN<-k+1 CHART 桁数, 小数首位の問題 常用対数をとる 303 10 (1) log105=logo =10g1010-10g102=1-0.30100.6990 log10.006=login (2・3・10-)=10g102+log10 3-310g 10 10 =0.3010+0.4771-3=-2.2219 logi√72=logio (2-3) = (310gin2+210gi3) <log1010=1 重要 10g 5=1-log 2 この変形はよく用いられ る。 √A=A =12(3×0.3010+2×0.4771)=0.9286 (2) log 10 650-50 log106=50 log10(2.3) =50(10g102+10g103) =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10 65 39 よって 1038 <6501039 したがって, 650 は 39桁の整数である。 2\100 (3)10g10( =100(10g102-10g103) 3 (2) 10 ≤N<10%+1 ならば,Nの整数部分 は (+1) 桁。 =100(0.3010-0.4771)=-17.61 -18<logio ゆえに よって 10-18< 2 *<(3) 200 100 <-17 <10-17 ゆえに、小数第18位に初めて0)でない数字が現れる。 5章 (3) 10 ≤N<10-*+1 ならば, Nは小数第 位に初めて0でない数 字が現れる。 練習 188 log 102=0.3010, 10g103=0.4771 とする。 15 は 桁の整数であり, は小数第 1位に初めて0でない数字が現れる。 3100 3-5 p.312 EX121

解決済み 回答数: 1