学年

教科

質問の種類

数学 高校生

(ク)について質問なのですが、なぜこの場合、二項分布なのでしょうか?二項分布と正規分布の違いも教えて欲しいです!!ネットで調べたのですが、二項分布を性格に書くと正規分布とでて曖昧な理解しか得られてなくて不安です。どなたかよろしくお願いします🙇‍♀️

第5問 (選択問題(配点 16 袋の中に赤球2個と白球4個が入っている。 この袋から 3個の球を同時に取り出 それらの球の色を確認して袋に戻すという試行をTとする。 Tを1回行ったと き、取り出した3個の球のうち赤球の個数をY とする。 第1回 (2)Tを1回行うごとに, Y = 0 であれば3点を獲得し, Y±0 であれば1点を獲得 するとする。 Tを繰り返し50回行ったとき、得点の合計をZとする。 このとき、50回のうち Y=0 となった回数を W とする。 ア ウ (1) P(Y=0)= P(Y-1)= イ エ 確率変数 W は ク に従うので,W の平均はケコ Wの分散は である。 カ Z= シ W + スセ であるから, 確率変数Zの平均はソタ Zの標準 であり。 確率変数の平均(期待値)は オ Yの分散は である。 キ 偏差は チ ツ である。 数学 数学B. 数学C 第5間は次ページにく) ク については、最も適当なものを、 次の①~⑤のうちから一つ選べ。 @ 正規分布 N (0.1) ② 正規分布N 50. ④ 正規分布 N (10.8) ( ① 二項分布 B(0,1) ③ 二項分布B 50, ⑤分 B (108)

解決済み 回答数: 1
数学 高校生

マーカー部分では判別式を使って何を示しているのでしょうか?教えてください🙇‍♂️

例題 112 接線に関する軌跡 放物線 y=x2 上の異なる2点P (1,2), Q(g, q2) における接線をそれぞれ l1, とし,その交点をRとする。 l と l2 が直交するように2点P, Qが動くとき 点Rの軌跡を求めよ。 [類名城大〕 ←例題 108 &2の方程式から交点の座標 (x, y) を求めると,xとyはともに,gの式で表される。 文字 g を消去する したがって, 方針は そこで用いるのは 2直線が垂直←(傾きの積)=-1 185 3 18 答案 x軸に垂直な接線は考えられないから,lの傾きをm とすると,その方程式は y=(x-p) すなわち y=m(x-p)+p2 x2=m(x-p)+p これと y=x2 を連立して 整理すると x²-mx+mp-p2=0 この2次方程式が重解をもつから, 判別式をDとすると D=(-m)2-4(mp-p2)=m²-4mp+4p²=(m-2p)2 P(p, p²) Q(g,g')) li l2 10. x R D=0 から (m-2p)=0 よって m=2p したがって, l の方程式は y=2p(x-p)+p² $73b5 y=2px-p² (1) 同様にして,l2の方程式は y=2qx-q² ②2 交点Rの座標 (x, y) は, 連立方程式 ① ② の解である。 ①をに おき換える。 と yを消去して整理すると 2(p-g)x=(p+α)(カーg) x=p+q J 2 y=2p⋅ b + q = p² = pq == 2 pag であるから これを①に代入して li⊥lz から 2p2g=-1 1 よって y=pq=- 4 また,p, q は 2次方程式 t2-2xt- ...... ③ の判別式を D' とすると D' 4 D = (-x)²-1⋅(-1) = x²+1 4 参考 左の答案は 今までに学習した 知識のみを用いて 接線の方程式を求 めているが,後で 学習する微分法を 用いるとより簡 単に求めることが できる(第6章微 ③ の解である。分法を参照)。 よって D'> 0 逆の確認。 ゆえに、任意のxに対して実数p,q(p≠q)が存在する。 1 したがって, 求める軌跡は 直線 y= =-4

解決済み 回答数: 1
数学 高校生

赤線の下以降の説明が分かりません。なぜ最初、bnのnに44を入れたんでしょうか?、、

例題 5 の数列のいずれかの項である自然数を小さい順に50個並べてできる数列を {cn} とする。 2つの数列{an},{6}があり, 一般項はそれぞれan=2"-1,bn=2nである。 この2つ 数列{cm} のすべての項の和を求めよ。 考え方。 数列{cm} の 50 項を,数列{an} に含まれる項と数列{6}に含まれる項とに分けてそれぞれの和を 求める。その際、同じ自然数を二重に足してしまうことを避けるため、2つの数列に同じ自然数がな まれるかどうかを確認しておく。 解法のプロセス 1 2つの数列{an},{bn}に同じ自然数が含まれるかどうかを確認する。 ② 数列{cm}に含まれる数列{an}の項と数列{bn} の項を求める。 3 数列{an} の項と数列{bn} の項に分けて和を求め, 合計する。 解答 と 数列{an}のすべての項は奇数であり、数列{6m} のすべての項は偶数 である。したがって、2つの数列{an},{6} の両方に含まれる自然数 は存在しない。 an ここで,644=88であり,数列{a}は (税込) 1,3,7, 15, 31, 63, 127, 246810 であるから a6<b44<a7 である。これと, 数列{an}, {bn} はともに増加する数列であることから, 数列{c}には,数列{an} の a1,a2, ..., 46の6項と,数列{6}の b1, 2, ..., b の44項が含まれる。 よって、 求める和をSとすると 6 44 6 44 S=a+b= (2-1)+ 2k ◆・・ 12つの数列{an},{6m}に同 じ自然数が含まれるかどうかを確 認する。 ◆ ② 数列{cm} に含まれる数列 {a} の項と数列{bm} の項を求め る。 項を書き並べてみると, 数 列{c} の大半の頃は数列{6} の 項であると予想される。 そこ で bso を求めてみると bs) =100 であり,これと数列{a}の項と を見比べて、数列{cm}に含まれ る {a} の最大の項と{b.}の最 大の項を探す。 k=1 k=1 k=1 44 =(1+3+7+15+31+63) +2k k=1 =120+2• 44.45 2 Reken =2100 ・・・ 答 えよう の項に分けて和を求め、合計する。 =1 (2-1)は k=1 k=1 6 k=1 k=1 12k. 224-21= と計算することもできる。 2(26-1)-6 2-1

未解決 回答数: 1