学年

教科

質問の種類

数学 高校生

72、73ともに解説を見ても、よく理解できませんでした…💦 どなたか解説をお願いします!

124 重要例題 72 条件つきの最大・最小 (1) x≧0, y≦0,x-2y=3 のとき, x2+y2 の最大値および最小値を求めよ。 ③ 基本60 重要 104 HART [SOLUTION 条件の式 文字を減らす方針でいく 変域にも注意 一見, 2変数x,yの最小問題であるが,条件の式を変形すると x=2y+3 これを x2+y2に代入すると x2+y²=(2y+3)2+y2 となる。 これはyの2次式であるから, 基本形に変形すると最大値と最小値を求められる。 ここで, 消去する文字の条件 (x≧0) を 残す文字 (y) の条件におき換えておくように。 解答 x-2y=3から x=2y+3 ..・・・・ ① x≧0であるから 2y+320 y≤0 との共通範囲は -sy≤0 ...... 2 ① また x2+y²=(2y+3)2+y2 =5y²+12y+9 ② において, ③は =6{(x+1)-(1/4)}+9 = 5(y + 5)² + ³/ y=0 で最大値 9. 6 9 y=-1 で最小値号/ 5 をとる。 ① から y=0 のとき y= のとき したがって, x=3, y = 0) x=¾/²³. よって y2-2 y= 6 5 (3) x=3 x=2(一号) +3=1号/ で最大値 9, 9 で最小値 x2+yin 最大19 最小 をとる。 0 y <消去する文字の条件 (x≧0) を 残す文字 条件 (-2)におき 換えておく。 ① x を消去する。 消去する文字は係数が 1-1のものを選ぶ とよい。 基本形に変形。 infy を消去する場合は x = -1/(x- から x² + y² = x² + (x-3) ² (x-3) (0≤x≤3) となる。 inf. 設問で要求されてい なくても、最大値・最小値 を与えるx,yの値は示し ておくようにしよう。 PRACTICE 72⁰ (1) x+2y=3 のとき, x2+2y2 の最小値を求めよ。 (2) 2x+y=10 (1≦x≦5) のとき, xy の最大値および最小値を求めよ。 〔(2) 常葉学園大] 重要 例題 73 2変数関数の最大・最小 x,yを実数とするとき, x2-4xy+7y²-4y+3 の最小値を求め, そのときの x, yの値を求めよ。 基本 59 CHART & SOLUTION 前の例題のようなxとyの間の関係式(条件式という)がないから,この例題のxとyは互 いに関係なくすべての実数値をとる変数である。 難しく考えず,まず,yを定数と考えて, 式をxの2次関数とみる。 そして 基本形 a(x-p)^+α に変形する。 そして, 更に残った定数項」(yの2次式) も 基本形 b(y-r)'+s に変形する。 ここで、 次の関係を利用する。 実数X, Yについて X'≧0, Y'≧0であるから, 解答 aX+by^+k (a>0, b>0, kは定数)は X = Y = 0 で最小値々をとる。 x 2-4xy+7y"-4y+3 ={(x-2y)-(2y)"}+7y²-4y+3 =(x-2y)'+3y²4y+3 =(x-2y)*+3((号)-(金)+3 =(x-2y)² + 3(y - 3)² +5 x, y は実数であるから (x-2y)¹20, (y-20 したがって, x-2y=0, y- = 0 すなわち x=1/43, y=1/23 で最小値01/23 をとる。 (実数) ≧0 a(x+ey+d)+b(y+e)2+k yを定数と考え, xにつ いて平方完成。 inf x を定数と考えて 平方完成すると次のように なるが、 結果は同じ。 7y²-4(x+1)y+x+3 =7{y_2(x+1) 1² - 4(x+¹)²+x²+3 =1/(7y-2(x+1)}2 POINT 2変数x,yの関数の最小値 α(x,yの式)+b(yの式)+k a,b,c,d,e, k を定数として (a>0, b>0) と変形できるなら, x+ey+d=0,y+e=0 で最小値をとる。 P RACTICE 73° x,yを実数とする。 6x2 +6xy+3y²-6x-4y+3 の最小値とそのときのx,yの値を 求めよ。 [類 北星学園大 ] 125 3章 8 2次関数の最大・最小と決定

未解決 回答数: 1
数学 高校生

1/2ってy2乗=0からどこいったんですか?

重要 例題 118 2変数関数の x,yがx+2y=1を満たすとき, x+yの最大値と最小値, およびそのとき のx,yの値を求めよ。 指針 139 例題 86は条件式が1次だったが, 2次の場合も方針は同じ。 条件式を利用して、文字を減らす方針でいく。このとき,次の2点に注意。 [1] 計算しやすい式になるように, 消去する文字を決める。 ここでは、条件式をy=1/12 (1-x)と変形して 1/2x+y²に代入するとよい。 [2] 残った文字の変域を調べる。 y'=1/12 (1-x²) で,y≧0であることに注目。 CHART 条件式 文字を減らす方針で 変域に注意 解答 x2+2y²=1から y≧0であるから1-x≧0 よって -1≤x≤1 ② ① を代入すると 2012/12 (1²) したがって ...... ① ゆえに (x+1)(x-1)≦0 12/2x+ /1/2x+1/1/2x+1/12/0 1/²x+y²= -√√x²+ f(x)↑ 1 2. 斗 最小 0 2 5 = - 12/17 ( x - 1²/2 ) ² + 1/²1/2 8 これをf(x) とすると、②の範囲で 5 f(x)はx=1/23 =1/12/3 で最大値 88, x=-1で最小値 - 5 8 最大 -1-21-2 をとる。 ①から + = + 028 = ± √/ 1 (1-1) = + √²-46 =1/2のとき x= 3 y=± =土 =±- 8 x=1のとき y'=0 ゆえに y = 0 (x,y)=(1/2, ± 16 ) のとき最大値 1 √6 5 土 8 (x,y)=(-1,0)のとき最小値 S (実数) ≧0 3²307&J) 3 (221250) しょか ■条件式は x,yともに2次 計算する式は 基本 xが1次,yが2次 <xの2次式 であるから,yを消去する しかない。 基本形に直す。 x2+ 【y=± 2 --- + (-1 1+1/(-1/2+1/2 ± √ √ 1/2 utaz -(1-x²)

解決済み 回答数: 1
数学 高校生

y^2≧0はなんのためにありますか?

202 重要 例題 121 2変数関数の最大・最小 (3) | 実数x,yがx2+2y²=1を満たすとき, x+y2 の最大値と最小値, および2 ときのx,yの値を求めよ。 指針か.150 例題 89 は条件式が1次だったが、2次の場合も方針は同じ。 条件式を利用して、文字を減らす方針でいく。このとき、次の 解答 2点に注意。 [1] 計算しやすい式になるように,消去する文字を決める。 ここでは、条件式をy'=1/12 (1-x^²)と変形して 1/2x+y に代入するとよい。 [2] 残った文字の変域を調べる。 ****** y'=1/12 (1-x4)で,y≧0であることに注目。 ←(実数) CHART 条件式 2²2-1から=1/12 (1-2)・・・・・ ① -(1-x²) 1-x20 2≧0であるから ゆえに よって ① を代入すると (x+1)(x-1)≦0 -1≤x≤1 をとる。 ①から 変域に注意 文字を減らす方針で 1/2 x + x² = -1/2 x ² + 1/2 x + 1/1/2 f(x)はx= 2 これをf(x) とすると、②の範囲で - 1/2 ( x - 72 ) ( + 1/²/3) 1\2 (2) で最大値 58 (x,y) 58 f(x) - 1020 = ± √/12 (1-1) = X 土 x=-1のときy'=0 したがって 2 最小 0 x=-1で最小値- V8 5 8 最大 y = 0 12 12 (x,y)=(1/24) のとき最大値 8 √6 4 緑習 実数x,yがx+yを満たすとき, 2x+2y-1の最 ③ 121 ときのx,yの値を I 条件式は x,yともに2 計算する式は xが1次が であるから」を注ぎ るしかない。 xの2次式 基本形に直す。 ²+ = -1/- (²-11 +(-3)** (1-8²) y= 重 実求 (税込 [指] 解答

回答募集中 回答数: 0
数学 高校生

四角で囲んだ部分は、なぜこうなるのですか? 解説下から4行目です。

例題 182 例題 195 対数関数の最大・最小〔3〕 x≧2, y ≧2,xy = 8 のとき,次の式の最大値と最小値, およびそのと きのx,yの値を求めよ。 (1) (log2x) (log2y) 思考プロセス 文字を減らす (1) 2変数関数 (log2x) (log2y) の最大・最小 解 (1) xy = 8 より の利用 8 (2)yを消去してlogx - とすると,底にも真数にもxが含まれてしまい考えにくい。 x どちらかを定数にできないか? Action》 対数の積・商を含む式は,対数を1つの文字に置き換えよ 8 x≧2, y=- ≧2より x t = y = log2x = t とおくと, ② より このとき (log2x) (log2y)=t(3-t) 8 x (2) logx y = 8 ①より (log: x)(log: y) = (log: x)(log:-) ③ において、 右のグラフより, (log2x) (log2y) は 条件 log₂ y log2x 1文字消去 = .. 1 2 3 9 · - (₁ - 2/2 )² + 2/ 4 ® *), 1/1/1 ≤ 1/2 = ③より, 2 t (2) logxy 2 ≤ x ≤4 = (log2x) (3-log2x) 1≤t≤2 9 4 3 9 すなわち x = y = 2√2 のとき 最大値 2 3-log2x 3 log2x t t = 1, 2 すなわち x=2,y=4 またはx=4, y=2 のとき 最小値2 ≧1 であるから 2 xのみの関数 .. 3 (log2x) (log2y) 1 したがって, logxyは t=1 すなわち x = 2, y =4 のとき t = 2 すなわち x = 4, y = 2 のとき +32 132 3 -1≦2 最大値 2 最小値 t 1 2 (別解) log2x = X, log2y=Yと おくと, x≧2,y≧2ょ り X ≧ 1, Y ≧ 1 …(*) xy = 8 より log2xy = log28 log2 x + logzy = 3 よって X+Y = 3 (*) より 1 ≦ X ≦ 2 (与式) = XY = X (3-X) = -(x - 12/2) + 2/ 以下同様 ■t=log2x= このとき x = 2 ² = 2√2 y= 8 2√2 log2y=log2 3 2 8x 1 2 より 2√2 =3-log2x =1のとき CT のとき

解決済み 回答数: 1