数学
高校生

72、73ともに解説を見ても、よく理解できませんでした…💦
どなたか解説をお願いします!

124 重要例題 72 条件つきの最大・最小 (1) x≧0, y≦0,x-2y=3 のとき, x2+y2 の最大値および最小値を求めよ。 ③ 基本60 重要 104 HART [SOLUTION 条件の式 文字を減らす方針でいく 変域にも注意 一見, 2変数x,yの最小問題であるが,条件の式を変形すると x=2y+3 これを x2+y2に代入すると x2+y²=(2y+3)2+y2 となる。 これはyの2次式であるから, 基本形に変形すると最大値と最小値を求められる。 ここで, 消去する文字の条件 (x≧0) を 残す文字 (y) の条件におき換えておくように。 解答 x-2y=3から x=2y+3 ..・・・・ ① x≧0であるから 2y+320 y≤0 との共通範囲は -sy≤0 ...... 2 ① また x2+y²=(2y+3)2+y2 =5y²+12y+9 ② において, ③は =6{(x+1)-(1/4)}+9 = 5(y + 5)² + ³/ y=0 で最大値 9. 6 9 y=-1 で最小値号/ 5 をとる。 ① から y=0 のとき y= のとき したがって, x=3, y = 0) x=¾/²³. よって y2-2 y= 6 5 (3) x=3 x=2(一号) +3=1号/ で最大値 9, 9 で最小値 x2+yin 最大19 最小 をとる。 0 y <消去する文字の条件 (x≧0) を 残す文字 条件 (-2)におき 換えておく。 ① x を消去する。 消去する文字は係数が 1-1のものを選ぶ とよい。 基本形に変形。 infy を消去する場合は x = -1/(x- から x² + y² = x² + (x-3) ² (x-3) (0≤x≤3) となる。 inf. 設問で要求されてい なくても、最大値・最小値 を与えるx,yの値は示し ておくようにしよう。 PRACTICE 72⁰ (1) x+2y=3 のとき, x2+2y2 の最小値を求めよ。 (2) 2x+y=10 (1≦x≦5) のとき, xy の最大値および最小値を求めよ。 〔(2) 常葉学園大] 重要 例題 73 2変数関数の最大・最小 x,yを実数とするとき, x2-4xy+7y²-4y+3 の最小値を求め, そのときの x, yの値を求めよ。 基本 59 CHART & SOLUTION 前の例題のようなxとyの間の関係式(条件式という)がないから,この例題のxとyは互 いに関係なくすべての実数値をとる変数である。 難しく考えず,まず,yを定数と考えて, 式をxの2次関数とみる。 そして 基本形 a(x-p)^+α に変形する。 そして, 更に残った定数項」(yの2次式) も 基本形 b(y-r)'+s に変形する。 ここで、 次の関係を利用する。 実数X, Yについて X'≧0, Y'≧0であるから, 解答 aX+by^+k (a>0, b>0, kは定数)は X = Y = 0 で最小値々をとる。 x 2-4xy+7y"-4y+3 ={(x-2y)-(2y)"}+7y²-4y+3 =(x-2y)'+3y²4y+3 =(x-2y)*+3((号)-(金)+3 =(x-2y)² + 3(y - 3)² +5 x, y は実数であるから (x-2y)¹20, (y-20 したがって, x-2y=0, y- = 0 すなわち x=1/43, y=1/23 で最小値01/23 をとる。 (実数) ≧0 a(x+ey+d)+b(y+e)2+k yを定数と考え, xにつ いて平方完成。 inf x を定数と考えて 平方完成すると次のように なるが、 結果は同じ。 7y²-4(x+1)y+x+3 =7{y_2(x+1) 1² - 4(x+¹)²+x²+3 =1/(7y-2(x+1)}2 POINT 2変数x,yの関数の最小値 α(x,yの式)+b(yの式)+k a,b,c,d,e, k を定数として (a>0, b>0) と変形できるなら, x+ey+d=0,y+e=0 で最小値をとる。 P RACTICE 73° x,yを実数とする。 6x2 +6xy+3y²-6x-4y+3 の最小値とそのときのx,yの値を 求めよ。 [類 北星学園大 ] 125 3章 8 2次関数の最大・最小と決定
グラフ 変域 最小値 最大値

回答

72です。
ポイントは条件分に下線を引いて考えることです。

円と直線の距離に読み替える
yuusuke333

73です。ポイントは2乗した数は0以上という性質を使います。

この回答にコメントする
疑問は解決しましたか?