学年

教科

質問の種類

数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1
数学 高校生

仮説検定の問題です。 P(Z≧2)の前との間の途中式がよく分かりません。 これはx-(エックスの平均)に何かを代入しているの でしょうか? また分母の計算も有理化などをしているのですか? 解説して貰えると助かります🙏🏻

27 ある果樹園で生産されるオレンジは、例年1個あたりの重さの平均が 95g, 標準偏差が6gであ るが, 今年はより大きな果実を生産するために肥料を変えた。 今年のオレンジから 144個を無作為 抽出して調査したところ,その平均は96gであった。 標本の標準偏差が6gであるとすると,今年 生産されたオレンジは例年より重くなったと判断できるか。有意水準 5% で片側検定せよ。 11 仮説検定 27 今年生産されたオレンジの重さの平均をmとする と、帰無仮説はm=95, 対立仮説はm>95 である。 帰無仮説が正しいとすると、標本平均 X の分布は 正規分布 N (95,6)と見なせる。 (3)大きさの標本の標本平均 X の標準偏差は 72 であるから 72 <4 よって n>324 よって したがって、標本の大きさを少なくとも325に すればよい。 X-95 1 P (X-95 ≧ 96-95)=P 6 6 2(1) 計測回数をnとすると, 信頼区間の幅は,信頼 合前の 度95%のとき √144 √144 0.04 2.1.96. P(Z≧2) =0.02275< 0.05 したがって,m=95 という帰無仮説は棄却される。 すなわち, 今年生産されたオレンジは例年より重く なったと判断できる。 であり,信頼度99% のとき 0.04 2.2.58・ 「n である。 よって、区間の幅が狭いのは、 信頼度 95%の信頼

解決済み 回答数: 1