学年

教科

質問の種類

物理 高校生

(3)で位相のズレとかは考えなくて良いのですか?

の角周波数 は, 2π 2×3.14 = 3.14×102rad/s T 2.0×10-2 また, XL=wLなので, (2)の結果を用いると, 2.0×10²=(3.14×102)×L L=0.636H @= 368 548. インピーダンス 解答 (1) (a) (2) (a) (3) (a) V R2+ wL= 1 [A] (b) 0A R 47²L² T² Vo (2) (b) 4²L² T² R²+ V -[A] (b) 2πL と表される。 コイルに加 T わる電圧の位相は, 抵抗よりも π/2 進 んでおり,回路のインピーダンス Za [Q] は, 図1のように示される。 した がって, Za=√R2+(wL)=R'+ 4π²L² T2 7² A2C2 [Ω] /2(R2+ 2 R² + 指針問題図(a), (b) では,いずれも直列に接続されており, 交流電 圧を加えたとき,等しい電流が流れる。 電流に対する電圧の位相は、抵 抗では等しく, コイルではπ/2進み, コンデンサーではπ/2遅れる。 解説 (1) (a) 十分に時間が経過したとき,定常電流が流れる。 こ のとき, コイルの誘導起電力は0であり, コイルは抵抗0の導線と みなせるので,電流Iは, I=1 [A] V R (b) 十分に時間が経過したとき, コンデンサーは充電を完了しており 直流電流を通さない。 したがって,電流は0Aである。 (2) (a) コイルのリアクタンスは, 1 wC 0.64 H [Ω] V₁ WLA 図 1 T2 42C2 〔A〕 (b) コンデンサーのリアクタンスは, と表される。 コ ンデンサーに加わる電圧の位相は, 抵抗よりも π/2 遅れており,回 路のインピーダンスZ [Ω] は、図2のように示される。したがって, T 2лС 1 T 2₁= √ R² + (C)² = √ R² + 17³C² (92) Zb=1 [Ω] WC 42 (3)(a)加えた電圧の実効値を Va とすると, 最大値 Vo を用いて Za R 図2 1 wC Vo Va= -〔V〕である。電流の実効値を Iaとすると, Ia=Va/Zaの √√2 関係が成り立つ。 を求めたの Lの値を計算する。 ●コイル(またはコンテ ンサー)のリアクタンス をXとすると抵抗とも 素子の電圧の位相差 /2なので, Z=√Re+X2 となる。

未解決 回答数: 0
物理 高校生

写真の赤線部では交流回路でのコイル、コンデンサーはそれぞれ (電圧の実効値)=(リアクタンス)×(電流の実効値)という式が成り立つと書かれていますが、この電流電圧の実効値は抵抗を流れる電流と同じ(最大電圧(流)の1/√2倍した)数値ですか?最大電圧(流)を1/√2倍したもの... 続きを読む

■コンデンサーのリアクタンス 式(27)より、Io=ωCV であるからwC=- 1 とおいて Vo=X。 と表 Xc すと、電流の最大値 Ⅰ と電圧の最大値 V。 との間には, オームの法則と類 似の関係が成り立っており, Xc は電気抵抗に相当する物理量となってい -p.250 ることがわかる。 このXc をコンデンサーのリアクタンス (容量リアクタ ンス)といい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コンデンサーのリアクタンス 1 (28) XcwC 式(24)より、Io= Xc [Ω] コンデンサーのリアクタンス w [rad/s] 角周波数 C〔F〕 電気容量 コンデンサーでは, 角周波数 ωや電気容量Cが大きいほどリアクタンス 小さくなり, 電流は流れやすくなる。 また, 電圧の実効値 Ve と電流の 効値との間にも同様に,Ve=Xce という関係が成り立つ。 コイルのリアクタンス Vo であるから,wL=Xとおいて Vo=X。 と表す WL と、電流の最大値と電圧の最大値 V。 との間には,オームの法則と類似 の関係が成り立っており, XL は電気抵抗に相当する物理量となっている reactance ことがわかる。 このXL をコイルのリアクタンス (誘導リアクタンス)と いい, 単位には電気抵抗と同じオーム (記号 Ω) を用いる。 コイルのリアクタンス XL=wL (25) XL,[Ω] FELL FAC コイルのリアクタンス w [rad/s] 角周波数 hata To 4 10 L [H] 自己インダクタンス スが大きくなり, 電流は流れにくくなる。 また, 電圧の実効値 V と電 実効値との間にも同様に, Ve = Xile という関係が成り立つ。 コイルでは, 角周波数や自己インダクタンスLが大きいほどリアクタ

未解決 回答数: 1
物理 高校生

写真の赤線部についてですが、なぜ1次コイルの誘導起電力の大きさは電源電圧(この場合、交流電源の電圧)と等しいのですか?

C 交流による送電 変圧器 世界中で交流がよく用いられて 1次コイル いる理由の1つに,変圧器(トラ transformer ンス) を使って簡単に電圧を変え られることが挙げられる。 変圧器は、図24のように共通 の鉄心に2つのコイルを巻いたも のである。 1次コイルに交流電流を流すと, 鉄心の中に変動 する磁界が発生する。 この磁界は2次コイルを貫く ため,電磁誘導によって2次コイルにも変動する電圧が発生する。 1次コイルの巻数を N1, かける電圧を V1, 流れる電流を In, 2次コイ ルの巻数を N2, 発生する電圧を V2, 流れる電流をIとし, コイルの抵抗 は無視できるものとする。 1次コイルに電流を流し, 時間tの間に鉄心 の中の磁束が⊿だけ変化したとすると, 1次コイルの誘導起電力の大き さは,電源電圧の大きさに等しくとなる。また、発 が鉄心の外に漏れないとすると,2つのコイルを貫く磁束の変化は等 しいので,2次コイルの誘導起電力の大きさは,V2-№.2c れる。したがって, 1次コイルの誘導起電力の大きさ V1, 2次コイルの で表さ 2次コイル 第4部 電気と磁気 図 24 変圧器 ル側で周波数は変化しない。 1次コイル側と2次コイ Check p.296式(2) V=-N² 40 4t 18 誘導起電力の大きさ V2 と, それぞれの実効値 Vie, V2e, および巻数N, Mi coraz N2 との間には, 次の関係が成り立つ。 V1_Vie _ N1 (21) V₂ V2e N₂ また,エネルギーの損失がない理想的な変圧器では, 1次コイルと2次 コイルで電力が等しい。このとき, 1次コイル, 2次コイルを流れる電流 の実効値をそれぞれ Ine, Ize とすると, Vielle = V2eze という関係が成り 立つ。 1 2 20 ■変圧器の2次側に何も接続しなければ, I2=0 となる。 このとき, 1次側は単なるコイルとなっ て電流が流れるので, Le0 である。 すなわち, Vielle = V2eIze は厳密には成り立たない。 実際の 変圧器では, コイルの巻数を多くするなどして Ize = 0 のときのeを小さくしている。

解決済み 回答数: 1
情報:IT 高校生

情報1の"音のデジタル表現"の単元についてです。 下の写真の4.の3つの問題がよくわかりません。 なぜこの答えになるのか教えて下さい。 テストも近いのでなるはやでお願いします(o_ _)o ※横の赤文字が答えになります。

■ 2. 通常の音楽CDは量子化ビット数を16ビットで記録している。 これに対して, デジタル音楽 配信サービスの中には量子化ビット数を24ビットにして同じ楽曲を販売しているケースがある。 原音に対して, サンプリング周波数は同じであるとして、 次の説明のうち正しいものを1つ 選べ。 波の高さ ? ? ① 演奏時間が同じ場合,データ量は少なくなる ② データを扱う機器やコンピュータ内蔵CPUの負担は減る 超低音から超高音まで音の上下限が拡大する ④ より小さな音から大きな音までの表現力の幅が広がる <96000回 3. 音楽CDの何倍もの情報量を持つ 「ハイレゾ (High Resolution) 音源」の楽曲がネット配信 販売されている。 標本化周波数 96KHz, 量子化ビット数が24ビット, ②チャンネルのス レオであるとき, 16GBの記憶容量を持つプレーヤーなら, 1曲が4分として約何曲保存す ことができるか。 次の中から1つ選べ。 なお, 1K=1000 とする。 96000×24×2×(60×4)= 138 115 1157 (4 1382 4. 次の計算をして、適当なものをそれぞれ1つ選べ。 電話の音声をデジタル信号にするとき, 最大周波数が4KHzであった場合の標本化周波 ① 4KHz ④ 32KHz 8KHz 16KHz ✓ 上記データをマイナス範囲-8~ 0, プラス範囲0~7の16段階で量子化する場合のビ 数。 ① 8bit 上記データをそのまま符号化したとき, 1K=1000の場合の、 最低必要となる伝送速度 ① 4Kbps ④32Kbps ② 8Kbps ③ 16Kbps ① 4bit 16bit 32bit

回答募集中 回答数: 0