学年

教科

質問の種類

数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

(2)の解説において n≧2^mとすると、というのはただの仮定ですよね? nが2^mより小さくなる時のことは考えなくていいんですか?

[広島大] 基本100 重要 例題 すべての自然数nに対して, 2" n (1) k=1 k (2) 無限級数1+ (2) 数列 指針▷ (1) 数学的帰納法によって証明する。 1 2 3 1 + + することの証明 +1が成り立つことを証明せよ。 213 + n ・・・・・・・ は発散することを証明せよ。 基本 117, 重要 126 2m n2 とすると k= を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 は0に収束するから,p.201 基本例題 117 のように、199 基本事項 ②② 4章 15 ここで,m→∞のときn→∞となる。 5無限級数 計算すると,等 はさみうちの 比) II) an-br る。 内法を利用 ■れる。 計算 解答 2" (1) ・+1 k=1 k 2 ① とする。 [1] n=1のとき 1/2=1+1/2 k=1k = +1 2 よって,①は成り立つ。 [2]=mmは自然数)のとき、①が成り立つと仮定すると1/3+1 このとき 2m+1 k=1k = = 2m 2m+1 1 + 1 k=1k k=2+1 k 2 (1+1)+2+1+2+2+2 k -nxn 1-x) 2x2+1 2m+1=2m2=2"+2" 2"+2"_miei-9200 =m+ 1 1 1 +1+ + + 2m+1 2m+2 m 2 +1 1> 2m+k 2m+1 2 (k=1,2, 1+1.2mm+1 +1+ > よって, n=m+1のときにも ① は成り立つ。 0 1 2m+2m (= 2m+1 2m-1) [1], [2] から, すべての自然数nについて①は成り立つ。mil I (2) Sm=211 とおく。2" とすると,(1)から 2m m Sn≥ +1 k=1 k k=1 ここで,m→∞のときn→∞ で lim am (+1)=0 よって limSn=8 →∞ n→∞ 00 したがっては発散する。 lan≦bn でliman=∞⇒limbn=∞ (p.174 基本事項 ③ ②) 81U 81U n=1 n Job

未解決 回答数: 0