学年

教科

質問の種類

数学 高校生

数Bの数列の問題です この問題はなにを求めるのかがよく分かりません めちゃめちゃ初歩的な事だと思うんですけど教えていただけると嬉しいです!

B1-48 (518) Think 例題 B1.27 いろいろな数列の和(2) S„=1−22+32-4°+....+(-1)" を求めよ **** nが偶数か奇数かで [考え方 S, は数列 am=(-1)*+1㎡の初項から第n項までの和であるが、n その和を分けて考える必要がある nが偶数、つまり、n=2mmは自然数のとき, 解答 Szm=1-2°+3°-4++ (2m-1)-(2m) 第2m =(12°)+(32−4°) ++{(2m-1)−(2m)} nが奇数,つまり,n=2m+1のとき wwwwwwwwwwwwww 第 3 項 Szm+1=12-2+32-4++ (2m-1)-(2m)+(2m+1)2 t -第 (2m+1) 項 =(1-2)+(3-4)+…+{(2m-1)-(2m)}+(2m+1)2 FL m III wwwwwww nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−22)+(32-4) +... +{ (2m-1)-(2m)2} wwwwwwwwwwww m m ={(k-1)-(2k)}=2(-4k+1) k=1 k=1 =-4 4.1.2m(m+1)+m=-m(2m+1) 2m(+1)+ n=2mより,m=nを①に代入して, == …② n=2,4,6, 数列 {(2m-1)²-(2m) の初項から第 m項ま での和と考える. ...① me 和はnで表す. になる。 -2m-m mm1 nが奇数のとき, n=2m+1(mは自然数) とおくと, wwwwwwww Sn=S2m+1=(1²-22)+(3²-4²)+) (+)(-s)- +{(2m-1)-(2m)2}+ (2m+1)^ =S2m+(2m+1)=-m(2m+1)+(2m+1)^ =(m+1)(2m+1) _1. ③ n=2m+1 より,m=1/2(n-1) ③に代入してxs S=(1/n+1/2)(n-1+1)=1/2m(n+1) ④は n=1のときも成り立つ n=3,5,7, 塩だなあない場合 x(E- (x)= よって、②より,S,=(-1)+1.1 S=(-1)+(n+1) Focus n=1 とすると, 11/21.2=1 場合分けした②④ の形のままでもよい。 が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2+

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

(3)がわかりません、先生の解答と私の回答を添付しました a+3/2 < a+1 と a+3/2 ≧ a+1をなぜここで使ってくるのかがわかりません 解説よろしくお願いします🙇

習 【数と式 ⑤】 ★★★ 2次方程式2-(3a +5)x+a^+4a+3=0 ① (aは定数)がある。 (1) x=-1が方程式①の解であるとき,aの値を求めよ。 (2) 方程式①の解をαを用いて表せ。 1年間の総復習 【2次関数 ④ 放物線y=x4ax+2b...... ①がx a,bは定数とする。 (1) 放物線①の頂点の座標を求めよ。 (3) 方程式①の解がすべて, 不等式3a-5<2x < 3g+5 を満たすxの範囲内にある (2) 放物線 ①が点 ときの値の範囲を求めよ。 (1) ニートが解より代入 2(リー(3a+5)(-1)+a2+4a+3=0 2+3a+5+aziqa+3=0 Q:70+10-0 ・a=-2,-5 (11/16)を通るとこ 4'16 さらに, AB=2√5であるとき、 難 (3) 2点A、Bのx座標がともに0x めよ。 このとき, A. Bのx座標を うな整数の値を求めよ。 y=(x-243-4a2+21 (a+2) (a+5)=0 (2) 頂点(20-4026 ①がx軸と異なる2点 で交わっているので (2) 2-(a+3)→-a-3 2x²-(3a+5)x+(a+1) (a+3)=0 {x-(a+3)}{x-1)}=0 B) X = Q+3 atl 2 / 30-52x<3a+s (1) a+3 2 30-5 くく < atlaとはすなわち かつ a+3 atl<30+5 -② 1X-(a+1)→2a-2 -39-5 at3 ②とatは 大平関係はまだわから ない。0,10,-10 a+3c2a+2 ①が(本店)の代入 このと = -40 * +2b 2b=aよって b=/2/20 b<2087 Jacza 4a²-a> o 0140-1)>0 · a<o. <a⋅ (3)チス=400+2 fon= (x-a4a alaとき ここで、 軸x=2a SCRE ①、②aっしょり ①より 30-5913 at 3a75 J 134-50+3 2ac8 a<4-0' ②より 20+2c3a+s a2-3-②' -3 kack (l) a+3 12 ≧ atlaときすなわちa+3≧20+2 30<a+1 -③ 2 かつ a≦1のとき 2 ②より 3a-52a+2 a7-③ 8 0 fu fis ③-40+2b< b<za² ④ 02a8 019<4 26:0 b>o- ⑥564-32a+26 →a b16a- 39-5 +1 +336+5 ④からQ ③1 ④ry a+3<3a+5 7 07-115 -1<0≤1 a=1, 9組のう 満たすの Q=3

解決済み 回答数: 1
数学 高校生

数学の大学入試の問題です 6(2)がわかりません。 解説お願いします

を 6 [2021 神戸大] a を実数とする。 xの2次方程式x2+(a+1)x+α2-1=0について,次の問いに答えよ。 1個のさい (1)この2次方程式が異なる2つの実数解をもつようなαの値の範囲を求めよ。 に出た目の (2)(1)で求めた範囲で動かすとき,この2次方程式の実数解がとりうる値の範囲を162> 標を 求めよ。 (2) 2次 (3) 2次 い。 3 ≥2 2'2b b 3 √3 等号が成り立つのは、 2-26 = 2 のとき、すなわち、 ✓のときであり、 これ 6 は b1 を満たす。 1 このとき②より すなわち a=+- √2 したがって, La= で最小値をとる。 6 [2021 神戸大] 率を求 11 [20 αを正 (1)の2次方程式x2+(a+1)x+α-1=0 の判別式をDとすると,D>0となること が条件である。 D=(a+1)2-4(q2-1)=-3a2+2a+5 =-(a+1)3a-5) (1) せ (2) (3) あるとき 表す。 D>0 から (a+1X3a-5)<0 よって、求めるαの値の範囲は -1<a< ...... ① (2)与えられた方程式をαについて整理すると a2+xa+x'+x-1=0 のと 14は素数でない。 これをαの2次方程式とみて、 ①の範囲に解をもつ条件を調べる。 f(a) =a2+xa+x²+x-1とおくと +2x'+x-1 数 6 y=2x から 放物線y=f(a)の軸は,直線である。 を a-t² [1] 1 すなわち2のとき f(-1)=x20 ようなCの接線の本数と一致する。 であるから, ①の範囲には解をもたない。 2-1-(-1)=a²+1>0 [2]11/3 すなわち -から, 点Aを通るようなCの接線 10 <x<2 ② Cの接線の方程式は,(1)より、 にする ことから, = 2ap+1, のとき、①の範囲に解をもつ条件は,f(-1)>0であるから ゆえに を通ることを示している。 二、 直線 PQ の方程式である。 すなわち +*+*-150 (x+2)(3x-2)≤0 (-2)50 よ。 って -2515 これは②を満たす。 x-- 16 (8)=x+1/+18=(x+1/3)20 であるから、①の範囲には解をもたない。 [1]~[3] から, 求めるxの値の範囲は -2515

解決済み 回答数: 1
数学 高校生

下線のa≠0は分かりますが、bはなぜそのように言えるんですか?

基本(例題 8 ベクトルの平行と成分 00000 2つのベクトル a=(3, -1), 6=(7-2t, -5+t)が平行になるように,tの値 を定めよ。 [類 千葉工大 ] p.370 基本事項 3 指針 2つのベクトル=(a, as), = (b, ba) =0,d)について aka となる実数kがある A ⇔ab2-abi=0 B (証明は,下の検討を参照。) が成り立つ。 A, B のいずれかの平行条件を利用して、 方程式の問題に帰着させる。 1. 0 であるから, aとが平行になるための必要 7-2t=0かつ-5+t=0 解答 十分条件は,=ka を満たす実数 k が存在することである。 よって (7-2t, -5+t)=k(3, -1) となる tはない。 すなわち (7-2t, -5+t)=(3k, -k) ゆえに 4 7-2t=3k ①, -5+t=k ...... ② x成分成分がそれぞ ①+② ×3 から - 8+t=0 (0,0)-(1-2 1+2 れ等しい。 したがって t=8 このとき k=-30 別解 a = 0, の必要十分条件は 18 よって 0 であるから, a と が平行になるため (0.0)=(15+2+2 3・(-5+t(-1)(7-2t)=00=1 -15+3t+7-2t=0&s =0=51+ Dz したがってt=8 -1)=(-3, 2) 平行条件を利用。 AD-FCなどを考えて 冒 a=0, 6 = 0 のとき 成分で表された平行条件anabe-abı=0の証明 検討 al/kaとなる実数がある (p.362 基本事項 4 ) ⇒ (b1,62)=k(a1, a2) よって, aika1, b2=kaz となる実数kがあるから abz-azb=as(kaz-az(ka)=0 逆に, b2-ab=0 ...... A ならば, a≠0より, α と α2 の少なくとも一方は0でない。 3dXp0000 (=) α≠0 のとき, A から b2= a2 a1 b1=kとおくと,b=ka,b=kazとなり =ka (k は実数) a1 ゆえに 以上により allb α2≠0のときも同様である。 a bab₂-a2b₁=0 0=2 37

解決済み 回答数: 2