数学
高校生
解決済み

数学の大学入試の問題です
6(2)がわかりません。
解説お願いします

を 6 [2021 神戸大] a を実数とする。 xの2次方程式x2+(a+1)x+α2-1=0について,次の問いに答えよ。 1個のさい (1)この2次方程式が異なる2つの実数解をもつようなαの値の範囲を求めよ。 に出た目の (2)(1)で求めた範囲で動かすとき,この2次方程式の実数解がとりうる値の範囲を162> 標を 求めよ。 (2) 2次 (3) 2次 い。 3 ≥2 2'2b b 3 √3 等号が成り立つのは、 2-26 = 2 のとき、すなわち、 ✓のときであり、 これ 6 は b1 を満たす。 1 このとき②より すなわち a=+- √2 したがって, La= で最小値をとる。 6 [2021 神戸大] 率を求 11 [20 αを正 (1)の2次方程式x2+(a+1)x+α-1=0 の判別式をDとすると,D>0となること が条件である。 D=(a+1)2-4(q2-1)=-3a2+2a+5 =-(a+1)3a-5) (1) せ (2) (3) あるとき 表す。 D>0 から (a+1X3a-5)<0 よって、求めるαの値の範囲は -1<a< ...... ① (2)与えられた方程式をαについて整理すると a2+xa+x'+x-1=0 のと 14は素数でない。 これをαの2次方程式とみて、 ①の範囲に解をもつ条件を調べる。 f(a) =a2+xa+x²+x-1とおくと +2x'+x-1 数 6 y=2x から 放物線y=f(a)の軸は,直線である。 を a-t² [1] 1 すなわち2のとき f(-1)=x20 ようなCの接線の本数と一致する。 であるから, ①の範囲には解をもたない。 2-1-(-1)=a²+1>0 [2]11/3 すなわち -から, 点Aを通るようなCの接線 10 <x<2 ② Cの接線の方程式は,(1)より、 にする ことから, = 2ap+1, のとき、①の範囲に解をもつ条件は,f(-1)>0であるから ゆえに を通ることを示している。 二、 直線 PQ の方程式である。 すなわち +*+*-150 (x+2)(3x-2)≤0 (-2)50 よ。 って -2515 これは②を満たす。 x-- 16 (8)=x+1/+18=(x+1/3)20 であるから、①の範囲には解をもたない。 [1]~[3] から, 求めるxの値の範囲は -2515

回答

疑問は解決しましたか?