学年

教科

質問の種類

数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

(3)解説お願いします🙇🏻‍♀️

カ と 12 重要 例題 3 同じものを含む円順列 じゅず順列 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが 1個ある。 玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 これらを丸く円形に並べる方法は何通りあるか。 これらの玉に糸を通して首輪を作る方法は何通りあるか。 602 CHART O OLUTION 解答 (2) 回転したとき他の円順列と一致しないように, 透明な玉1個を固定する。 (3) じゅず順列の総数を求める問題。次のように分けて考える。 「左右対称である円順列」と「左右対称でない円順列」 8.7 8! 6!2! 2・1 9! 6!2! (1) 1列に並べる方法は (2) 透明な玉1個を固定して, 残り8個 を並べると考えて 裏返すと 自分自身 -=28(通り) PRACTICE... 31 9 STREA 9.8.7 2・1 4通り よって、左右対称でない円順列は 28-424 (通り) この24通りの1つ1つに対して、裏 返すと一致するものが他に必ず1つ ずつあるから、首輪の作り方は +24=16(通り) (3) (2) 28通りのうち、右下の図のOGAIO ように左右対称になるものは D.TOURE -252 (通り) レープに 基本 17, 重要 21 裏返すと 自分以外 の円順列 ◆同じものを含む順列。 279 ◆赤玉6個, 黒玉2個を1 列に並べる場合の数。 inf 解答編 p.216 にすべ てのパターンの図を掲載し た。 左右対称でないものは、 裏返すと一致するものがペ アで現れることを確認でき るので参照してほしい。 列に並べる方法は 1章

回答募集中 回答数: 0
物理 高校生

⑶の解説に[半波長ののm倍が円周の長さ0.25πに等しい]と書いてあるのですがなぜそうなるか教えてください

応力を磨く 解答編p.8 156 実験結果の解説を理解して考察するアウタイ ( 励振器 (バイブレーター) にループピアノ線 (直径25cm) を取りつけて振動させると ループピアノ線に沿って時計回りと反時計回りの振動が伝わり, 励振器の振動数を調整 すると円周上に定在波が生じる (図1)。 この定在波の発生について,以下の問いに答え よ。 0 第Ⅲ部 波 図1 ループピアノ線に生じた定在波 ( 腹の数が6個の定在波) [U ...... 0900 00000 ·m m 0 0 V V f(Hz) 150 100 (1) ループピアノ線に腹の数が6個の定在波が生じているとき, 励振器の振動数は 90 Hz であった。 ピアノ線を伝わる波の速さを求め, 円周率πを用いて答えよ。 (2) 直線に張った弦をはじくと張力によって振動するが,ループピアノ線は曲げによる 変形に対する応力によって振動する。 このため, ループピアノ線の振動は腹の数と振 動数が比例関係を示さず, 振動数fは腹の数の2乗にほぼ比例することが知られ ている (図2)。腹の数が2個 8個のときの振動数をそれぞれ推定せよ。 (3) 励振器の振動がループピアノ線を伝わるときの波の速さ”と腹の数の関係とし て,最も適切なグラフを下記の①~⑥から選び番号で答えよ。 1 50 0 (5) 腹の数mと振動数の関係 0 2 8 腹の数m[個] 図2 ループピアノ線の定在波の腹の数と 振動数fの関係 m 4 +m 6 0円 V m 221 HA

回答募集中 回答数: 0
英語 高校生

(6)でなぜ完了不定詞になるのか教えて頂きたいです。 問題文の方で、校長先生だと言われていた時と校長先生だった時は、同じ時制ではないのですか?

EXERCISES 1 次の各文を、 それぞれ [ ]内の語で始まる文に書きかえなさい。 1) For children to swim in this river is dangerous." [It] 2) This town is pleasant to live in. [It] 3) You're nice to remember my birthday. [It] 4) The teacher advised Yumi not to waste her time." [Yumi] 5) We saw Mike get on the train at Kyoto Station." [Mike] 6) It is said that Ms. Suzuki was principal* of this school. [Ms. Suzuki] 7) It appeared that the boy had forgotten my name. [The boy] 8) It seems that there is little hope of her success. [There] 次の各文の誤りを正しなさい. 1) Please be careful to not touch the walls. 2) Lisa came all the way, only find Mike was out. 3) It was careless for her to make such a mistake.* 4) We listened Takeshi to play the piano.* 5) The professor made her student waits in the hall.* 5) The meeting is to hold in London next month. 7) I was enough lucky to find a nice apartment. LALALAL 次の各組の文がほぼ同じ意味を表すように, 第2文を完成させなさい. Would you tell me the way to City Hall? ) Would you tell me ( ) ( ) ( ) to City Hall? Ann wondered whether she should see him or phone. Ann wondered whether ( ) ( ) him or phone. have some books that you should read. I have some books ( ) ( ) ( ) ( ). I'm free this afternoon. I have () ( ) do this afternoon. told her that she should be more independent.* told ( ) ( ) ( ) more independent. It happened that I met Koji at the cafeteria. I ( ) ( ) ( ) Koji at the cafeteria. 1) For children はどんな働きをしている 6) principal 4), 5) 受動態にする

回答募集中 回答数: 0