学年

教科

質問の種類

数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0
数学 高校生

数学Ⅰの命題の証明問題についてです。 106は全部対偶の証明の問題なのですが、 対偶を示すときの”ならば”を”⇒”に変えてもいいのでしょうか?

である。 命題pg が真 ための必要条件か であるという。 1<3 4 <2 全体の集合を P, 全体の集合をQと <x<2」 2」 すなわち 2 一分条件でない √(-3)2=3 = b でない。 偽。 あるが, ✓62 でない。 為。 でもないか 1=0 =0 b=1 (a) DJ +y2=0」 (A) >0であ (C) 106 (1) 対偶 「nが偶数ならば, n +2n+1は奇 「数である」 を証明する。 nが偶数のとき, nはある整数kを用いて n=2k と表される。 このとき n³+2n+1=(2k)³ +2.(2k)+1 =8k²+4k+1 =2(4k3+2k) +1 4k3+2k は整数であるから, n' + 2n + 1 は奇数 である。 よって,対偶は真であり,もとの命題も真であ る。 (2) 対偶 「m, nがともに偶数ならば, m2 + neは 「偶数である」 を証明する。 mnがともに偶数のとき, ある整数k, lを用 いて m=2k, n=21 と表される。 このとき m²+n²=(2k)2+ (21)²=4k²+412 =2(2k2+212) 2k2 + 212 は整数であるから,m²+n²は偶数で ある。 よって, 対偶は真であり,もとの命題も真であ る。 (3) 対偶 「x≧0 かつ ≧0ならば 2x+3y≦0」 を 証明する。 x≦0から 2x≦0 y≦0から 3y≤0 よって, 2x+3y≦ 0 が成り立つ。 したがって, 対偶は真であり,もとの命題も真 である。 107 (1) 2+√6 無理数でないと仮定すると, 2+√6 は有理数である。 その有理数をrとすると, 2+√6=r より √6=r-2 ▼が有理数ならばr-2も有理数であるから,こ の等式√6 無理数であるこ AL A・B、練習問題

回答募集中 回答数: 0
化学 高校生

【1】青い→の所からよってまで計算の過程を教えてください。 【2】C/CO=0,50/2,0ではないのですか? また、なぜ2,0×1/2をしているのですか?

入試攻略への必須問題 ある化合物の分解を考える。初濃度 Co〔mol/L〕の化合物において、時 間』〔min〕後における濃度C[mol/L] は, C=Cpe="(kは反応速度定数) で表される関係式にしたがった。ここで (無理数) である。 は正の定数 なお、分解反応中、温度は一定とする。 (1) 化合物の初濃度が1.0mol/Lのとき、1分後に 0.50mol/L に減少し たとする。初濃度が 2.0mol/L の場合、1分後の濃度 〔mol/L] を数値 で求め. 有効数字2桁で記せ。 (2) 化合物の濃度が 初濃度Cの半分になるのに必要な時間 〔min〕 を数 式で記せ。解答の数式には,必要に応じて Co. k を含んでよい。ただし、 log2=0.69 とする (岡山大) 解説 Game", c=1/12 となるとき、丁とすると、 11/27=e²kT 両辺の自然対数をとると. -020 1027 0.69 (2) の解答 k k Tは一定であり,これが半減期です。 20.50 1 Co 1.0 2 ます。 となりますね。 なところいっきになるの? 2.0×12=1.0 [mol/L] (1の解答 (1) 1.0mol/L Co=2.0 [mol/L] の場合も T=1 [min] で一定ですから, 1分後には PSD z magy (2) 0.69 k まいた C=C₂e² L となるのが,t=1 [min] なので, T=1 [min] とわかり 男の海とかとい 物になったときの、 final ・ニー exe Co=2x 低 Ca Yr

回答募集中 回答数: 0
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0