学年

教科

質問の種類

数学 高校生

⑵が意味わかんないです。

in (a+B), の値を求めよ、 p.241 =1 を利用して cos a cos B 角α. B 象限に注意。 sin² ar + costs sin²β+cosp= 12_16 13 65 1233 13 22 23 sin(a-8) を求め, sin(a-B) cos(a-B) 計算してもよい ing+coslo= n²+cos を求めよ 4 EX93(1 152 2直線のなす角 (1) 2直線3x-2y+2=0, 3√3x+y-1=0のなす鋭角を求めよ。 基本例 指針 ・例題 (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 解答 2直線のなす角 まず, 各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (050<n, 077 ) π (1) 2直線の方程式を変形すると √3 y= 2x+1, y=-3√3x+1 図のように、 2直線とx軸の正 2 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-a SIGN √3 2 (1) 2直線とx軸の正の向きとのなす角をα,βとすると, 2直線のなす鋭角は,α<βならβ-α または π-β-α) で表される。 ←図から判断。 この問題では, tane, tan β の値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 an 6 tanc= tan 0=tan(8-a)= tan(a+4)= 0<0</ であるから 0= (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tanq=2 tan ±tan π y=-3√3x+1 -3√3で tan β-tana 1+tan βtana =(-3/3)={(1+(3/3)・丹 π 1 tan a tan- Sa √√3 y=- 1 0 O y=2x 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, 3 B x /y=2x-1 m X p.241 基本事項 2 ys n to 0 y=mx+n | 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 1+ 傾きが mi, m2 の2直線 のなす鋭角を0とすると tan 0= x 2 別解 | 2直線は垂直でないから tan 8 m-m2 1+m1m2 √3-(-3√3) 2 -7/3+1/3-√3 ÷ 2 <<から 245 2直線のなす角は,それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで、 直線y=2x1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角を求めよ。 2 152 (2)直線y=-x+1との角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

⑵がいみわかんないです。なんでπ/4がここに入るんですか。また±になってる理由がわかりません。

sin(Q+B), B) の値を求めよ。 cos0=1 を利用して るが、COS acos Bと 36 角α B 象限に注意。 Asina+cos Asin²B+cos 31216 5 13 65 412 5 13 . 11 2013/18 ◄sin(a-8 を求め, sin(a- cos(a- 計算してもお "sin'a+adin sin³8+cos n(er-8), 基本例題 152 2直線のなす角 (1) 2直線√3x-2y+2=0,3√3x+y-1=0のなす鋭角0を求めよ。 4 | (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 の値を求め 指針 IB 解答 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (0≤0<n, 0= 7 ) (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線のなす鋭角0は,α <βなら β-α または π- (B-α) で表される。 ←図から判断。 (1) 2直線の方程式を変形すると √√3 -x+1, y=-3√3x+1 2 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-α y= √3 2 tan0=tan(β-α)=- tan a=- 9 tanβ=3√3で tan(a+4)= この問題では, tan α, tan βの値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 y=-3√3x+1 tan β-tana 1+tan 3 tan a tan a tan √3 y=- 1Ftan a tan- 4 (複号同順) π 0<0</ であるから 0= 75 3 (2) 直線y=2x-1とx軸の正の向 YA きとのなす角をα とすると tang=2 2001 = Ka I TEIS 4 = −(−3√3-√3)={1+(-3√3). √3)=√3 /3 2 2 340J 2004 S 0 0 16-2 y=2x 0 2±1 1+2.1 であるから 求める直線の傾きは -3, 1 3 =(0) TIA B x SELO _n m x /p.241 基本事項 2 YA n O 0 (S) Ly=mx+n -0 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 傾きが m1,m2の2直線 のなす鋭角を0とすると tan 0= m-m2 1+m1m2 x -7√3+1/3-√3 2 2 y=2x-10<<から6=7 GURA 10 2直線は垂直でないから tan 0 √3-(-3√3) 1+√3+(-3√3) 2 = 2直線のなす角は, それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで,直線y=2x-1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角 0 を求めよ。 ② 152 (2) 直線y=-x+1と4の角をなし,点(1,3)を通る直線の方程式を求めよ。 245 4 章 24 加法定理

回答募集中 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0