学年

教科

質問の種類

数学 高校生

(2)は 4分の7π はダメですか?

520 9/04 基本 100 複素数の乗法と回転 0000 (1) z=2-6i とする。 点ぇを, 原点を中心として次の角だけ回転した点をおい 複素数を求めよ。 (4) 6 (1) 一 (2)(1-1)は,点zをどのように移動した点であるか。 指針 a=r(cos 0+isin0) 2 0EE 点は、点を原点を中心としてだけ回転し、 原点からの距離を倍した点である。 (特に,r=1のときは回転移動のみである。) このことを利用する。 (1) 絶対値が1で、偏角がや 掛ける。 (2)1-iを形式で表す。 yo (*) やー とした である複素数をzに かかれて いないから品 CHART 原点を中心とする角0の回転 r(cosO+isin0) を掛ける 回転だけならr=1 キョリは (1) 求める点を表す複素数は 解答 (cos/0/+isin)== (2+1/12 (26) =√3-3√3iti+3 =3+√3+ (1-3√3) i (4) {cos(−)+isin(−)}z=−i(2–6i) (2) (1-i)z=√2 ( =√2 (cos(-7)+isin(-4) 2 よって, 点 (1-izは,点zを =(√3+i) (1-3) =-6-2i ye O 注意 (2) と同様に考え 1-i ・・・原点中心の iz・・・ 原点中心の I 元は? 44 原点を中心として-7 だけ回転 -z・・・ 原点中心の し、原点からの距離を2倍した点である。 であることが導かれ [練習 ① 100 (1) z=2+4i とする。 点z を, 原点を中心として 2 -πだけ回転した 3 素数を求めよ。 (2)次の複素数で表される点は,点2をどのように移動した点である (ア) -1+i 2 √2 Z 1-√3i (ウ)

未解決 回答数: 1
数学 高校生

118は個数を減らしていくだけなのに、120はなぜ全ての出てきた数を掛け算するのか教えて欲しいです。 

第1章 27 答 ★★★★★ 「当たりくじ4本を含む9本のくじを,A,Bの2人がこの順に1本ず 引くとき、次の確率を求めよ。 ただし, 引いたくじはもとにもどさ ない。 (1) Aが当たったとき, Bも当たる確率 (2)Aがはずれ,Bが当たる確率 Aが当たるという事象をA, Bが当たるという事象をBとする。 (1) 求める確率は 3 PA(B)= 各 (2) 求める確率はP(A∩B) で表され, 乗法定理を利用して P(A∩B)=P(A)P(B)=1×1/28-1/8 5 4 5 各 場合の数と確率 A 117 40人のクラスで通学方法を調査したところ, 電車を使う生徒は16人、自 転車を使う生徒は 22 人,両方使う生徒は6人であった。この40人から1 人を選ぶとき,その人が通学に電車を使うという事象を A,通学に自転車 を使うという事象をBとする。次の確率を求めよ。 (1) P(ANB) (2) PA(B) (3) PB (A) □ 118 赤玉6個,白玉4個が入った袋の中から,もとにもどさないで1個ずつ2 回取り出すとき,最初の玉が赤である事象を A, 2番目の玉が白である事 象をBとする。次の確率を求めよ。 なんで足し管?? *(1) PA(B) (2)PA(B) * (3) Pa(B) (4) Pa(B) 119 当たりくじ3本を含む15本のくじを, A,Bの2人がこの順に1本ずつ引 くとき,次の確率を求めよ。 ただし, 引いたくじはもとにもどさない。 (1)Aが当たり,Bがはずれる確率 (2) 2人ともはずれる確率 (3) Bが当たる確率 A Clear 例題 27 120 赤玉5個, 白玉7個が入った袋の中から,もとにもどさないで1個ずつ3 回取り出すとき,次の場合の確率を求めよ。 なんでかけ算?? (1) 1回目に赤玉、2回目に白玉,3回目に赤玉を取り出す。 (2)3回目に初めて赤玉を取り出す。

解決済み 回答数: 1
数学 高校生

複素数平面です (2)がわかりません 範囲の両端を合わせないといけないということですか?また、どうして合わせるのですか、

3章 13 複素数の極形式と乗法、除法 要例 96 複素数の極形式 (2) 偏角の範囲を考える ①①①①① の複素数を極形式で表せ。 ただし, 偏角0 は 0≦0 <2z とする。 -cosa+isina (0<a<л) (2) sina+icosa (0≤a<2) 基本 95 既に極形式で表されているように見えるが, (cos+isin) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 - (1) 部の符号 - を + にする必要があるから, COS (π-0)=-cos0 を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin(π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の COS を sin にする必要があるから -0=sin0, COS 2 (一)= sin(0)= =cose を利用する。 2 また,本間では偏角 0 の範囲に指定があり, 0≦0 <2m を満たさなければならないこと に注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin (1) 絶対値は 解答 また の形 三角関数の公式を利用 (-cosa)+(sinα)2=1 -cosa+isina=cos(π-a)+isin (π-α) ...... ① <a<πより,0<x-α <πであるから,①は求める極 形式である。 (2) 絶対値は また ここで √(sina)²+(cosa)²=1 sina+icos a=cos(-a)+isin(-a) ≦a≦のとき, 2 る極形式は 2 であるから cos(π-0)=-cost sin(π-0)=sin0 515 偏角の条件を満たすかど うか確認する。 cos(2-0)-sine sin(-)-cos o -αであるから、求め <2から -- π 3 って sina+icosa=cos (7/7-a)+isin (7/7-α) π ゆえに, αの値の範囲に 2 よって場合分け π π <<2のとき<<0 <α <2のとき, 偏 2 2 角が0以上 2 未満の範 各辺に2を加えると、 各辺に 2πを加えると, 12 on-a<2πであり CO COS (-a)= cos(-a), 0x sin(-a)-sin(-a) -α=sin 囲に含まれていないから, 偏角に2を加えて調整 する。 なお COS (+2nπ) =COS 3302TUCCIAsin(+2nx)=sin よって、求める極形式は 5 sina+icosa=cos ineticos (317-α)+isin (27-α) で [n は整数] TP

解決済み 回答数: 1