学年

教科

質問の種類

数学 高校生

マーカーの式はどうやって求めたものですか?

192 1/21.7 1/26.X / 23. 重要 例題 113 漸化式と極限 (5) ... ・はさみうちの原理 数列{an}が0<a<3, an+1=1+√1+an (n=1, 2, 3, …………) を満たす 1 (1) 0<a<3を証明せよ。 (2) 3-an+1<· 3 (3-4) を証明せよ。 (3) 数列 {a} の極限値を求めよ。 C i p.174 基本事項 3. 指針 (1) すべての自然数nについての成立を示す数学的帰納法 の利用。 (2)(1) の結果,すなわち > 0, 3-α>0であることを利用。 (3) 漸化式を変形して,一般項an をnの式で表すのは難しい。 そこで,(2)で 式を利用し, はさみうちの原理を使って数列{3-an}の極限を求める。... はさみうちの原理 すべてのnについて pan≦gn のとき limplimgn=α ならば liman=α 710 118 80 なお,次ページの補足事項も参照。 CHART 求めにくい極限 不等式利用ではさみうち 解答 (1) 0<an<3 ① とする。 [1] n=1のとき,与えられた条件から ①は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると 0<a<3 n=k+1のときを考えると, 0<ak <3であるから ak+11+ √1+ak 20 SE ak+1=1+√1+an <1+1+3=3 したがって 0<ak+1 <3 よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2)3-αn+1=2-√1+an 3-an 2+1+an3 3 (3-an) n-1 (3-a₁) (数学的帰納法 <0<a<3 <0 < ak から ak<3から <3-α>0で ら 2+√1+ n≧2のとき (3) (1), (2) 5 0<3-an 1n-1 lim(1/3) (3-a) = 0 であるから したがって lim(3-an)=0 00+U liman=3 n→∞ <()*(3- 練習 α=2, n≧2のときan= Jan-1 1 を満たす数列{an}について 2 ③3 113 (1) すべての自然数nに対してan>1であることを証明せよ。 (2) 数列{a} の極限値を求めよ。

解決済み 回答数: 1
数学 高校生

数列が収束しないとlimを分配できないのはわかるんですが、それを一つ一つ解答に書かないとダメですか?普通の計算問題だとそのまんま答え出すのに?、、

問 42 数列の極限 (II) (無限等比数列) 73 liman=r (収束) mn+1 注 第n項が 1+2" (-1)で表される数列の収束, 発散を次の各場 12-00 E r>1 のとき, limy”は発散しますが,逆数をつくれば0</1/1 <1 となり, lim 合について調べよ . 12-00 '=0 と収束させることができます. 次の(4)も同じ要 (1) r=1 (2) -1<r<1 (3) r>1 (4) r<-1 領です. 精講 等比数列 {r"} の極限,すなわち, limyの値によって次のよ うになります. 極限値0 (-1<r<1) 極限値1 (r=1) 収束 limr"= +8 (r>1) 発散 振動する (r≦-1) この基礎問は誘導がついていますが,このことを頭に入れておけば,自力で 場合分けをすることができます。 しかし、この問題は式が分数の形をしていますから, limr", lim y"+1 を求 めたとしても不定形になる可能性があります. 72-00 12-00 解答 mn+1 an= 1+r" (r≠-1) とおく. (1)r=1 のとき, an=1/2 .. liman= =1/2束) 12-00 (2) -1<r<1 のとき, limr" = limy”+1=0 だから, n→∞ liman=0 (収束) 12-00 (3) r>1のとき, an=- n→∞ 0 0 10 以外の定数 r 分子, 分母をr” でわっ +1 ておく 01<1だから,lim =0 71α (4) r<-1 のとき, an= +1 -1<1/12<0だから, lim (1)"=0 7→8 r .. liman=r (収束) →∞ 注 極限を求める問題の解答をかくとき, うかつに lim 記号を分配し てはいけません. 極限が lim (an+bn) = liman+limb となるのは liman=a, limbn=β (α, 'B:定数) の形のとき n→∞ n→∞ すなわち, 数列 {a} と数列{6} がともに収束するときです. だから, 解答のように各項が収束していることを先に示さなければなりません. ポイント 「極限値0(-1<<1)] 収束 極限値1(r=1) ・limy”= n→∞ +8 (r>1) 発散 振動する (r≦-1) ・ うかつに lim 記号を分配しない 演習問題 42 第n項が man+1+1 2n+1 で表される数列の収束, 発散を調べよ. 第4章

解決済み 回答数: 1
数学 高校生

この0<はどこから来てるんですか?n^2/2^nの最小値ならnに4を代入した1じゃないんですか?どうして1<=にしないんですか?

28 — 数学Ⅲ 第3 分数型) と極限 PR nは4以上の整数とする。 ③20 不等式 (1+h)" >1+nh+ n(n-1) h²+ 2 6 2" (1) lim (2) lim n2 ugu n-8 22 与えられた不等式において,h=1 とすると 2">1+n+ n(n-1) n(n-1)(n-2) 2 6 n(n-1) (1) ①から 2"> 2 2nn-1 両辺をnで割ると ここだけでた。 n 2 n-1 lim 2 =∞ であるから (2) ①から 2"> n(n-1)(n-2) mil 2n lim =8 n→ ∞ n n(n-1)(n-2) (h>0)を用いて,次の極限を求めよ。 binf. 与えられた不等式 (1+h)=2 T=0 inCh (二項定理)から得られる。 mil n>0であるから不等 号の向きは変わらない。 an>bnで limb = 0012 ならば liman=8 110 (2) で定められ PR 21 6 Vie <a>6>0のとき 1 6 両辺の逆数をとると 2n n(n-1)(x-2) 2 'n' 6m² 両辺に n' を掛けると 22 n² 6n よって 2n n2-3n+2 2n n(n-1)(n-2) a 言 20 であるから不等 号の向きは変わらない。 (n-1)(n-2) =n2-3n+2 G 6n ここで, lim =lim n→ ∞ n²-3n+2 n→∞ 6 n 3 2 + take (1) n -= 0 であるから n² lim n→∞ n² 2n 2 = 0 はさみうちの原理 a a1=2, an+1= 5an-6 2an-3 (n=1, 2, 3, ・・・) で定められる数列{an} について (1)6m= an-1 an-3 とおくとき,数列{bm} の一般項を求めよ。 (2)一般項 αと極限 liman を求めよ。 n→∞ 5an-6 Lint. 1 liman = α と仮定 (1) bn+1= an+1-1 2an-3 an+1-3 5an-6 1218 5an-6-(2an-3) すると, lim 2 5an-6-32a

解決済み 回答数: 1
数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

かっこ2は数列と言われてないのに0より大きいってなんで分かるんですか?

基本 例題 20 極限の条件から数列の係数決定など 00000 (1) 数列{az} (n=1, 2, 3, ......) が lim (3n-1)a=-6を満たすとき, limna = である。 8818 17100 [類 千葉工大] (2) lim(n+an+2-n-n) =5であるとき、 定数αの値を求めよ。 p.34 基本事項 基本 18 指針 n (1) 条件 lim (3n-1)a=-6を活かすために, nan3n-1)円× と変形。 3n-1 数列 1377-1} は収束するから,次の極限値の性質が利用できる。 lima=a, limb=β⇒lima,b=aβ (α,βは定数) 11-00 818 →∞ (2)まず、左辺の極限をαで表す。 その際の方針は.38 基本例題18 (3) と同様。 0 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, 72 00 n 1 1 lim =lim わかっている数列ので 表す。 72100 3n-1 72→80 1 3 3 7 1 よって lim nan 7210 =lim (3n-1)an×lim n→∞ 1 =(-6). =-2 3 (2) lim(√2+an+2-√n²-n) 12-00 (n²+an+2)-(n²-n) =lim 72100 =lim n→∞ =lim √n²+an+2+√n²-n (a+1)n+2 n²+an+2+√n²-n (a+1)+ 22 nco 3n n n 収束するやつ。 + 2 a+1 12 n→∞ a 2 1 + - + + 1- n n² よって、条件から a+1 -=5 したがって 2 a=9 極限値の性質を利用。 かけられる! ab mil 分母分子に √ntan+2+vn-n を掛け,分子を有理化。 分母分子をnで割る。 n> 0 であるから n=√n² αの方程式を解く。 ■ (1) 次の関係を満たす数列{a} について, liman と limna を求めよ。 (ア) lim (2n-1)an=1 7178 118 (イ) lim n→∞ 2an+1 an-3 =2 n→oo (2) lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数αの値を求めよ 8+U (2)摂南

解決済み 回答数: 1
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0