学年

教科

質問の種類

物理 高校生

高校物理の問題です。 本当にわからないです教えてください!!

132 気体の変化 次の問いに答えよ。 (1) 気体に加えられる熱量をQ 気体にする仕事を w 気体 の内部エネルギーの変化をAUとして,これらの間に成 立つ関係式を答えよ。 また, この関係式が表す法則の名前 を答えよ。 次に,ピストンのついたシリンダーに閉じ込めた気体を加 熱する場合を考える。 気体の体積を一定にして加熱する場合 を(a), 圧力を一定にして加熱する場合を(b) とする。 (2) (a) の場合, 気体にする仕事 w は正か0か負か。 また, 熱する 加えられる熱量Q 内部エネルギーの変化AUの間に成中の り立つ式を答えよ。 (b) (3) (b)の場合,気体にする仕事 wb は正か0か負か。 また, 仕事 wb, 加えられる熱量 Qb, 内部エネルギーの変化4Uの間に成り立つ式を答えよ。 (4) (a)(b)の場合で同じだけ温度を上昇させる場合を考える。 気体の内部エネルギー を温度だけの関数とすると, AU と AU. との大小関係はどうなるか。 また,Q』 とQ との大小関係はどうなるか。 さらに, (a) の場合の比熱 c と (b)の場合の比熱 co との大 小関係はどうなるか。 ただし, (a) と (b) の場合で気体の質量は等しいとする。 気体 ピストンは固定 Q熱する ピストンは動く 277

回答募集中 回答数: 0
生物 高校生

高校生物です!! (2)の(力)がZZになる理由とテトラサイクリン処理をしたあと、(ケ)と(シ)がマイナスになる理由を教えてください!! どなたかよろしくお願いします🙇‍♀️

[リード] [C] 大学入学共通テスト対策問題 リード C+ 26 次の文章を読み、以下の問いに答えよ。 ある種の蛾は, 性染色体の構成がZW/ZZ (雌がZW, 雄がZZ) であり, 集団の雌 つ採集したところ, A 地域では雌= 4匹, 雄= 6匹であり, B 地域では雌= 5匹, 雄 雄比が1:1であることが知られている。 実際に良子さんが、 2つの地域で10個体ず =5匹であった。 ところが C 地域から 10個体の蛾を採集して, 外部形態から雌雄 を判定したところ, 雌=9匹, 雄= 1匹であった。 そこで良子さんは以下のレポートを作成した。 C地域の蛾の集団では、 雌雄比が1:1ではないのか、もしくは偶然に極端な 雌雄比で採集されてしまったのか,どちらの可能性が高いのかを考察する。 そのために以下の2つの排他的な仮説を立て,仮説のもとで雌雄比9:1が 十分起こりそうなことであるならば仮説1を採択し, 起こる確率が小さければ (ここでは 0.05 以下とする), 仮説2を採択することとする。 仮説1:C 地域の蛾の雌雄比は1:1である。 仮説2: C 地域の蛾の雌雄比は1:1ではない。 雌雄が混在する集団から無作為に10個体の蛾を採集した場合, すべてが雌ま たは雄である場合の数は(ア)通りである。 また, 1個体のみが雌または,1 個体のみが雄である場合の数はイ)通りである。 C 地域の雌雄比が1:1 (仮 説 1) ならば,このようなことが発生する確率は((ア)+(イ))/(ウ) で求められる。 この値は 0.05 よりも小さいので,仮説1は棄却され, 仮説2を 採択する。 もっとも, C 地域の蛾の雌雄比は1:1であったのに、 今回の採集で雌雄の数 がたまたま雌= 9匹, 雄=1匹になってしまい, 本当は仮説が正しかったにも かかわらず仮説2を誤って採択してしまった可能性は残っている。 (1) 空欄(ア)~ (ウ)に当てはまる最も近い数値を, 次の①~⑧からそれぞれ選べ。 ②2 ③ 10 ④20 ⑤ⓢ 100 6 200 71000 8 2000 2) 良子さんは仮説2 を受け入れたものの, さらに研究を進めることにした。 文献調 査をしたところ, ある種の蚊においても, 雌雄比が著しく雌にかたよる地域があ り, 「ある種の原核生物が雌の蚊に寄生したことが,その原因として考えられる」 と報告されていた。 良子さんが C 地域の蛾の雌とA地域の雄を実験室で交配した ところ, 生まれてきた子世代 (F,) がすべて雌になる親個体が存在した。 そこで, F, として生まれてきた雌の蛾を実験材料にして, A 地域の雄と交配し、その子世 代の幼虫のえさに, 原核生物の増殖を阻害する抗生物質テトラサイクリンを混ぜ て飼育し続けたところ, ある雌から生まれてきた子世代はすべて雄だった。 この

回答募集中 回答数: 0
生物 高校生

高校生物🪼です!! (2)の(カ)がZZになる理由とテトラサイクリン処理をしたあと、(ケ)と(シ)がマイナスになる理由を教えてください!! どなたかよろしくお願いします🙇‍♀️

[リード C' 大学入学共通テスト対策問題 リード C+ 26 次の文章を読み、以下の問いに答えよ。 ある種の蛾は、性染色体の構成がZW/ZZ (雌がZW, 雄がZZ) であり, 集団の雌 雄比が1:1であることが知られている。 実際に良子さんが、 2つの地域で10個体ず つ採集したところ, A 地域では雌= 4匹, 雄=6匹であり, B 地域では雌=5匹, 雄 =5匹であった。 ところが, C 地域から10個体の蛾を採集して, 外部形態から雌雄 を判定したところ, 雌 = 9匹 雄=1匹であった。 そこで良子さんは以下のレポートを作成した。 C地域の蛾の集団では,雌雄比が1:1ではないのか、 もしくは偶然に極端な 雌雄比で採集されてしまったのか,どちらの可能性が高いのかを考察する。 そのために以下の2つの排他的な仮説を立て,仮説1のもとで雌雄比9:1が 十分起こりそうなことであるならば仮説1を採択し, 起こる確率が小さければ (ここでは 0.05 以下とする), 仮説2を採択することとする。 仮説1:C 地域の蛾の雌雄比は1:1である。 仮説2: C 地域の蛾の雌雄比は1:1ではない。 雌雄が混在する集団から無作為に10個体の蛾を採集した場合, すべてが雌ま たは雄である場合の数は(ア)通りである。 また, 1個体のみが雌または, 1 個体のみが雄である場合の数は (イ)通りである。 C 地域の雌雄比が1:1 (仮 説 1) ならば,このようなことが発生する確率は((ア)+(イ))/(ウ) で求められる。この値は 0.05 よりも小さいので,仮説1は棄却され, 仮説2を 採択する。 もっとも, C 地域の蛾の雌雄比は1:1であったのに,今回の採集で雌雄の数 がたまたま雌= 9匹, 雄=1匹になってしまい, 本当は仮説が正しかったにも かかわらず仮説2を誤って採択してしまった可能性は残っている。 (1) 空欄(ア)~ (ウ)に当てはまる最も近い数値を、次の① ~ ⑧ からそれぞれ選べ。 ①1 ②2 ③10 4 20 5 100 6 200 71000 8 2000 (2) 良子さんは仮説2 を受け入れたものの, さらに研究を進めることにした。文献調 査をしたところ, ある種の蚊においても, 雌雄比が著しく雌にかたよる地域があ り, 「ある種の原核生物が雌の蚊に寄生したことが, その原因として考えられる」 と報告されていた。 良子さんが C 地域の蛾の雌と A 地域の雄を実験室で交配した ところ, 生まれてきた子世代(F,) がすべて雌になる親個体が存在した。 そこで, F] として生まれてきた雌の蛾を実験材料にして, A 地域の雄と交配し, その子世 代の幼虫のえさに, 原核生物の増殖を阻害する抗生物質テトラサイクリンを混ぜ して飼育し続けたところ, ある雌から生まれてきた子世代はすべて雄だった。 この

回答募集中 回答数: 0
化学 高校生

2つ質問があります。溶解度積の問題です。 ➀1枚目の画像の(2)と2枚目の画像の(2)とで解き方が違うのは何故ですか? ➁また2枚目の画像の解き方に関して、x<<0.05と仮定する、仮定できるのは何故ですか? 有効数字が云々と書いてありましたがよくわかりませんでした。

基本例題 69 溶解度積 (1) 25℃で塩化銀の水に対する溶解度は, 2.009 ×10-3g/Lである。 塩化銀の溶解度積 check (2) 25℃で濃度100×10mol/Lの希塩酸1.00Lに対して, 塩化銀は最大何mol溶け るか。 有効数字2桁で答えよ。 ただし, 水溶液の体積の変化はないものとする。 沈殿が生成しない 沈殿が生じる ●エクセル 溶解度積 Ksp ≧ [Ag+ ] [Cl-] 溶解度積 Ksp < [Ag+] [CI] 溶解度とは? もうこれ以上溶けない状態 解答 0000 HO HOHO(飽和溶液)の時の濃度 考え方 AgClの飽和水溶液中 (1) 溶解した塩化銀のモル濃度は では、固体の AgCl と水 2009 × 10-3g/L 143.5g/mol 溶液中の Ag+ と CI の間 で、次のような溶解平衡 が成り立っている。 AgCl(固) Ag+ + Cl0+ 溶解度積は一定に 保たれる。 (2) 基本328 0 Agclは水に難溶だが、 溶解度までは溶け 幼ため、そこから求めた = 1.40 × 10-5 mol/L AgCl Ag+ + Clより 塩化銀のモル濃度の Ksp = [Ag+][Cl-]= (140×10 ) × (140×10-5) 水に溶け =1.96×10-10 (mol/L)2 1塩化銀 容 2.0×10-10 (mol/L)モ [Ag+] = [Ag+][Cl-]=1.96×10−1(mol/L)2 1.96 × 10 -10 [Cl-] 1.96 x 10-10 -1 1.00 × 10 - 1 つば Ag cla Agte 格1,4810-5 終 -1.4x10 1,440 =1.96×10-mol/L 平衡時 0.1.4 答 2.0×10mol

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0