学年

教科

質問の種類

化学 高校生

1/3をかける理由が分かりません

容器1 電流 塩橋 気体1 電源 電流 バルブ チューブ 容器2 以下の文章を読み, 問1~間7に答えよ。 2 図2に示すような絶対温度 T[K]に維持された実験系があり,電解槽I, IIには0.1mol/L 塩化ナトリ ウム水溶液が, 電解槽Ⅲには 0.1mol/L 硫酸銅(II) 水 溶液が満たされている。 電解槽I, II の塩化ナトリウ ム水溶液は,塩橋で接続されている。電解槽I,Iの 塩化ナトリウム水溶液中には, それぞれ白金板1, 鉄 板が,電解槽Ⅲの硫酸銅(II) 水溶液中には銅板, 白金 板2が浸されている。 白金板1, 2は電源に接続され, 鉄板と銅板は導線で接続されている。 また, 白金板1, 塩化ナトリウム 2の上には,底が開き, 上部が密閉された容器 1,2 が置かれている。 容器1,2は,内部の体積が無視で きる柔軟なチューブで接続され, 上下方向に自由に動 かすことができる。 また, チューブには閉じたバルブ がつながれている。 水溶液 白金板1 鉄板 鋼板 白金板2 電解槽 I 電解槽 II 電解槽ⅢI 図2 実験系 気体2 硫酸銅(II) 水溶液 この実験系で以下の操作1~4を順次行った。 【操作1】 容器1および2を, それぞれの電解槽中の溶液で満たした。白金板 1, 2間に図に示す向きで一 定の電流ż〔A〕を時間 ta〔s] だけ流したところ, 白金板 1, 2からそれぞれ気体1,2が発生した。 この際, 流れた電気量を QA [C] とする。 発生した気体1,2を水上置換法によりそれぞれ容器1 2中に集め,容 器の内部と外部の水面の高さが同じになるように容器の上下方向の位置を調節した。 【操作2】 容器1, 2が上下方向に動かないように固定した状態でバルブを開き, 容器 1, 2内の気体を完 全に混合した。 【操作3】 バルブを再び閉め, 操作1と同様に一定の電流 iB〔A〕を時間 t〔s〕だけ流したところ, 白金板1, 2からそれぞれ気体 1, 2が発生した。 この際,流れた電気量を QB [C] とする。 その後, 内部の水面の高 さが容器外部の水面の高さと同じになるように容器2の上下方向の位置を調節した。 【操作4】 銅板を装置から取り外し, 水で洗ってから乾燥させ, 質量を測定した。 ただし,操作1~3の後においても,電解槽 I ~II内の電解質濃度には,大きな変化はないものとする。 また,気体1,2は理想気体であるとし, これらおよび空気の溶液中への溶解は無視できるものとする。 ファラデー定数をF[C/mol], 気体定数を R [Pa・L/(K・mol)〕, 大気圧を po〔Pa〕, 絶対温度 T[K] での飽 和水蒸気圧を PHzo 〔Pa] として, 以下の問に答えよ。 問1 Qをを含む式で表せ。 問2 操作 1,3, 白金板1, 2で起こる反応をそれぞれ電子 e-を含む反応式で表せ。 問3 操作1で発生した気体1,2の物質量 n, n [mol] をそれぞれQ』 を含む式で表せ。 問4 操作1の結果, 容器 1,2に集められた気体の体積 V1, V2〔L]を,それぞれQAを含む式で表せ。 問5 操作2の後の接続された容器1, 2における気体1,2の分圧, p2 〔Pa] をそれぞれpo を含む式で表 せ。 問6 操作3の後の容器2内の気体1,2の物質量を ni', n' [mol]とする。 以下の間に答えよ。 (i)' を Q を含む式で表せ。 (ii) n2' を Q, QB を含む式で表せ。

回答募集中 回答数: 0
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0