学年

教科

質問の種類

英語 高校生

英語の問題です。 できれば解き方も教えて欲しいです

(2) She listened attentively to her teacher ( the in no order to 2 in order not to (3) I carried the jar of honey very carefully ( ) miss anything. 私たちの目は、ま 1 ( )に入る最も適切な語句を ① ~ ④から選びなさい。 (2) (1) It is no ( ) arguing with people when they are very upset. 4 way (3 use The wonder 2 doubt (京都女子大) 3 in order to none ) spill it on the floor. ④so not in order to (共立女子大) divibe 3 so that 4 so as not to (畿央大) 3 be found 4 have found (駒澤大) ①in order to 2 instead of The (4) My watch wasn't to ( ) anywhere. I find had 2 finding (5) ( your 1 Keeping 4 You should keep antivirus software updated can maintain your computer's security. 3 In order to keep 2 Keep (6) The end-of-term test questions were reasonable and easy ( They scores. I be solved 2 to solve 3 solved (7) Both women became successful lawyers before ( 1 enter to ) politics. 3 entering now noilgga 195/mulov 2 entered into Tho (169but (8) I went to his house for help, ) find that he was not there. am) dhia so that 1 before (9) I'm looking forward to (i) all of you in person. (1) see 5) (10) Jill didn't have ( ①1 enough (11)( 2 saw ). All of the students got good (芝浦工業大) 4 having solved (東海大) ④ entrance ( 同志社女子大) ④only to y in person. 01, exil voy bluow ytivit ③ seeing ) time to check my homework, so I asked Kevin instead. 2 many ③ such ) that she had passed the exam, she shouted with joy. ①On hearing (12) Naomi likes ( 2 Upon heard 3 When heard ) to the same song again and again until she gets sick of it. 4 seen (南山大) ④plenty ( 日本女子大 ) ④With hearing (松山大) I listen 2 listening 3 listened Sie bo to listening BAW (13) There is ) what he will do. (立命館大) s an ①no telling (14) Little by little, I'm getting accustomed to ( 1 do (15) The news of free entrance tickets sounded ( 2 no to tell 3 not telling ④ not to tell 2 doing ) my job at the cafe. 3 be done (高千穂大) ④have done 1 as 2 so ) good to be true, but it was true. 3 too ④very (中京大) (16) I find (c ) hard to understand why they have made this decision. ①it 2 so C 3 that hitaq ④very (日本大)

回答募集中 回答数: 0
数学 高校生

サについて質問です。3枚目の解答のマーカーのところはどうやってでてきたのですか?

実戦問題 ベクトル 312 三角錐 PABCにおいて,辺BCの中点をMとおく。また。 <PAB=∠PAC とし、この角度を0とおく。 ただし, 0° <<90° とする。 ア ウ (1) AMはAM= AB+ AC と表せる。また I AP AB AP-AC JAP||AB| |AP||AC| である。 オ ・① オ の解答群 sino cose tan 1 1 1 sino cose tan sin ∠BPC ⑦ cos ∠BPC (8 tan BPC (2)45°とし,さらに|AP|=3√2 |AB|=|PB|=3, |AC|=|PC|=3が 成り立つ場合を考える。 このとき, APAB=APACカである。さらに, 直線AM 上の点Dが ∠APD=90° を満たしているとする。 このとき,AD=キAM である。 (3) AQ=≠AM で定まる点をQとおく。 PAとPQが垂直である三角錐 PABC はどのようなものかについて考えよう。 例えば (2) の場合では、点Qは 点Dと一致し, PA PQ は垂直である。 (1) PA PQ が垂直であるとき PQ を AB, AC, APを用いて表して考え ると, ク が成り立つ。 さらに ① に注意すると クからケが 成り立つことがわかる。 したがって,PAとPQが垂直であれば、 ケ が成り立つ。 逆に、 ケ が成り立てばPAとPQは垂直である。 ク の解答群 ◎ AP・AB+AP・AC=AP・AP ① AP-AB+APAC=-AP・AP ② AP・AB+AP・AC=AB・AC ③ AP AB+AP AC=-AB.AC ④AP・AB+APAC = 0 AP-AB-AP・AC=0

未解決 回答数: 0
数学 高校生

赤線のところの計算を教えて欲しいです

280 重要 例 172 正四面体と球 000 1辺の長さがαである正四面体 ABCD がある。 (1) 正四面体 ABCD に外接する球の半径Rをαを用いて表せ。 (2) (1)の半径Rの球と正四面体 ABCDの体積比を求めよ。 (3) 正四面体 ABCD に内接する球の半径r をα を用いて表せ。 (4)(3)の半径の球と正四面体 ABCD の体積比を求めよ。 指針 (1) 頂点Aから底面 ABCD に垂線 AH を下ろす。 外接する球の中心を0とすると, OA=OB=OC=OD (=R) である。 また,直線AH 上の点Pに対して, PB=PC=PD であるから, Oは直線AH上にある。 よって、直角三角形OBH に着目して考える。 πR³ (2)半径Rの球の体積は 1/2 (3) 内接する球の中心をI とすると, Iから正四面体 の各面に下ろした垂線の長さは等しい。 正四面体を Iを頂点とする4つの合同な四面体に分けると (正四面体 ABCD の体積)=4×(四面体IBCD の体積 ) これから, 半径r を求める (例題 167 (3) で三角形の内接円の半径を求めるとき 三角形を3つに分け, 面積を利用したのと同様) (1) 頂点Aから底面 ABCD に垂線 AH を下ろし、外接 する球の中心を0とすると, 0 は線分AH 上にあり B (3) 内接する球の中心を IACD, IABD, IBCD = V=4X (四面体 IBC =4: √3 3 √2 ばから √√6 1= 12 V= 12 ゆえに (4) 半径の球の体積 V2= よって V2 : V ―は基本 昌樹 検討 空間図形の問題は 基本例題 170 と重 空間図形の計量の 求めたい部分 ことが, 解法の 重要例題 172 の 考える問題では ことが多い。 球の中心は 平面は辺 CD a は右の図のよ であり,AB 共有点をもた 着目する平面 をかいて考え おぼえる 解答 OA=OB=R √6 ゆえに OH=AH-OA= a-R AH= √6 3 3a, △OBH は直角三角形であるから, 三平方の定理により BH2+OH = OB2 BH=- a よって 3 (*)*+ (a-R)²=R² 2 170 (1) の結果を用い 整理して - 2√6a a -aR=0 3 3 ゆえに R= 2/6 a=√6 a 4 B (2) 正四面体 ABCD の体積を Vとすると ・V= -a³ √2 √2 <V= -αは基本帳 12 また、半径Rの球の体積を V, とすると V₁==πR³= √6 √6 = 3 8 170 (2) の結果を用い よって V1:V= √6 a √2 NO3 : 12 a³=9π: 2√3 練習 半径1の ③ 172 ただし, 角形の (1)正 (2)球

未解決 回答数: 1