学年

教科

質問の種類

英語 高校生

投げやりです。すいません。英語皆無なので代行してください。

【必答問題 5 日常使う物のデザインをする際には標準化 (standardization) という方法がある。 という内容に続く次の英文を読んで、あとの問いに答えよ。(配点44) If we examine the history of advances in all technological fields, we see that some improvements come naturally through the technology itself, while others come through standardization. The early history of the automobile is a good example. The first cars were very difficult to operate. They required strength and skill beyond the abilities of many. Some problems were solved through automation. Other aspects of cars and driving were standardized through the long process of international standards committees: . On which side of the road to drive (constant within countries) country, but variable across On which side f the car the driver sits (depends upon which side of the road the car is driven) -The (2) of essential components: steering wheel, brake, clutch, and accelerator (the same, whether on the left- or right-hand side of the car) Standardization is one type of cultural constraint. With standardization, once you have learned to drive one car, you feel confident that you can drive any car, anyplace in the world. Standardization provides a major breakthrough in usability. I have enough friends on national and international standards committees to realize that the process f determining an internationally accepted standard is laborious. Even when all members agree on the merits of standardization, the task of selecting standards becomes a long, political issue. A small company can standardize its products without too much difficulty, but it is much more difficult for an industrial, national, or international body to agree to standards. There even exists a standardized procedure for establishing national and international standards. organizations works on standards. First, a set of national and international Then when a new standard is proposed, it must work its way through each organization's approval process. Standards are usually the result of a *compromise among the various competing positions, which can often be an inferior compromise. Sometimes the answer is to agree on (4 ). Look at the existence I both metric and *English units; of left-hand- and 18 right-hand-drive automobiles. There are several international standards for the *voltages and *frequencies of electricity, and several different kinds of electrical plugs and sockets- which cannot interchanged. With all these difficulties and with the continual advances in technology, are standards really necessary? Yes, they are. Take the everyday, clock. It's standardized. Consider how much trouble you would have telling time with a backward clock, where the hands revolved "counterclockwise." A few such clocks exist, primarily as humorous conversation pieces. When a clock truly violates standards, such as (the one in Figure 1, it is difficult to determine what time is being displayed. Why? The logic behind the time display is identical to that of conventional clocks: there are only two differences - the hands move in the opposite direction (counterclockwise) and the location of "12," usually at the top, has been moved. This clock is just as logical as the standard one. It. bothers us because we have standardized on a different scheme, on the very definition of the term clockwise. Without such standardization, clock reading would be more difficult: you'd always have to figure out the "mapping. E) compromise *metric メートル法の *English units イギリスの計量法(ヤードボンド法) *frequencies of electricity 電気の周波数 voltages E *mapping 対応づけ (2つのものの間の関係を意味する専門用語) 問1 下線部(1)の内容を、 同じ段落の自動車の例に基づいて30字以内の日本語で答えよ。た だし、句読点も字数に数える。 問2 本文中の空所 (2) に入る語として最も適当なものを、次のア~エのうちから一つ 選び 記号で答えよ。 7 color イ location ウ price I sight (239) 問3 第2パラグラフ (Standardization is one type of ...) について 次の Question に対す る Answer となるように、空所に入れるのに最も適当なものを,次のア~エのうちから一 つ選び、 記号で答えよ。 Question: What is "a major breakthrough in usability" provided by standardization? Answer Because of standardization, you ( device of the same kind all over the world. 7 can apply what you have learned to イ can make cannot produce I cannot use what you have learned when using 問7 下線部(5)が表す図 (Figure 1)として最も適当なものを、次のア~エのうちから一つ選 び記号で答えよ。 11 12 1 12 ) any machine or 10 2 10% 9 3 1 5 6 問4 下線部(3)の示す内容を, 40字程度の日本語で答えよ。 ただし, 句読点も字数に数える。 ウ 11 6 1 問5 次の文を第3パラグラフ (Ihave enough friends...) に入れるとき,本文中の①~ のうちのどの位置に入れるのが最も適当か、 次のア~エのうちから一つ選び, 記号 で答えよ。 9 3 Each step is complex, for if there are three ways of doing something, then there are sure to be strong proponents of each of the three ways, plus people who will argue that it is too early to standardize. 70 問8 最終パラグラフ (With all these difficulties...) の内容をもとに, 次の Question に2 語程度の英語一文で答えよ。 Question: According to the writer, why is the standardization of the everyday clo necessary? イ 2 ウ H O 問6 本文中の空所 (4) に入れるのに最も適当なものを、次のア~エのうちから一つ選び 記号で答えよ。 7 a single standard 1 several different standards ウ the same standard I too few standards <<-20-> <-21->

回答募集中 回答数: 0
物理 高校生

【5】(3)2.4×10^-5 J 【6】(3)Q²/2ε0S N になる理由を教えていただきたいです🙇🏻‍♀️

第4編 電気と磁気 20 電気容量がそれぞれ9.0μF, 1.5μF, 3.0μFの 5 コンデンサー回路 (p.246~248,250~251) コンデンサー C1, C2, C3, および 6.0V の直流 電源Eを,図のように接続した。 各コンデンサー 5 は、電源Eを接続する前は電気量を蓄えてい ないものとする。 apf C₁ HH (1)接続した3個のコンデンサーの合成容量 C〔μF] を求めよ。 11C/15 μF E (2) 各コンデンサーに蓄えられる電気量 Q1 Q2, Q3 [μC] を求めよ。 コンデンサー C3 に蓄えられる静電エネルギー U[J] を求めよ。 6 コンデンサーの極板が及ぼしあう引力 (Op.250~251) 極板面積 S[m²], 極板間隔d [m] 極板間が真空のコ ンデンサーにQ[C] の電荷を与える。 真空の誘電率を co〔F/m] とする。 (1) コンデンサーが蓄えている静電エネルギーU [J] 15 を求めよ。 6v 3MF Ad d (2) 極板上の電荷が逃げないようにして, 極板間隔を4d[m]だけゆっくりと広げ るとき,静電エネルギーの増加量を求めよ。 2枚の極板は正負に帯電しているので、引力を及ぼしあっている。この引力に 逆らって極板を引き離すために,外から加えた力のした仕事が (2)の静電エネ ルギーの増加になったと考えられる。外力の大きさがこの引力の大きさに等し いとして,この引力の大きさ F[N] を求めよ。

回答募集中 回答数: 0
数学 高校生

波線ところから分からないので教えて欲しいです🙇‍♀️

領域問題② ② [2016 名城大] xy 平面上に、2本の半直線l: y=x(x2), my=-x (x≦0) がある。 l上を点P (+1, t+1) (t-1) が動き, m上を点Q (t-1, -1+1) (t≦1) が動く。 (1)直線 PQ の方程式をを用いて表せ。 1 -x2+1に接することを示せ。 (2) PQ はもの値によらず、常に放物線y=1/2x2 (3)tの値が1st1の範囲で変化するとき、 線分 PQ が動いてできる領域を求め, 図示せよ。 解説 asyson+1 [1] [2] から, a を xにおき換えて、線分 PQ いてできる領域を表す不等式は −2≦x<0 のとき -*Sys+1 0≦x≦2 のとき xsys +1 が動 これを図示すると、 右の図の斜線部分である。 ただし、境界線を含む。 (1) 直線 PQ の方程式は -t+1-(t+1) y-(t+1)= -{x-(t+1)} t-1-(t+1) ゆえに y=t{x-(t+1)}+t+1 よって y=tx-f2+1 (2) y=ax2+1とy=1/2x2+1を連立させて x²+1=tx-t²+1 ゆえに x2-4tx+4t2=0 よって (x-2)²=0 この方程式はtの値によらず、常にx=2tを重解にもつ。 1 したがって, 直線 PQはtの値によらず, 常に放物線y=-x'+1に接する。 4 (3) 線分 PQ の方程式は、 (1) から y=tx-t2+1 t-1≦x+1) ここでαを定数とし、直線x=αと線分 PQ の交点の座標をtの関数と考え、こ れをf(t) とすると f(t)=ta-t+1=-f+at+1=(t-1)+10 -3 a² +1 x=α と固定するときのの条件は 11... P かつ t-1≦a≦t+1 すなわち a-1≦tsa+1 ② ①,② から、点(a,t)の存在範囲は、 右の図の網の 部分のようになる。 ただし、境界線を含む。) t=a+1 したがって、 ①と②の共通範囲は -2 [1] −2≦a<0 のとき -1≤t≤a+1 ....... ③ O 2 a [2]02 のとき a-1≤t≤1 ・・・・・・・ ④ t= ここで,y=f(t) のグラフの軸は直線t=2 である 2 が、これは区間 ③区間 ④のそれぞれの中央の値 に一致する。 yのとりうる値の範囲を調べると [1] −2≦a<0 のとき 人 t=a-1 a yはt=-1, a+1で最小: 1=1/27 で最大となる。 f(-1)=f(a+1)=-a, a² -a≤y≤+1 [2] 0≦a≦2 のとき (1)=9 2 100 a² +1であるから,yのとりうる値の範囲は yはt=1, a-1で最小;t=1/2で最大となる。 f(1)=f(a-1)=α であるから, yのとりうる値の範囲は

回答募集中 回答数: 0