学年

教科

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

数Bの数列の問題です 真ん中らへんの緑マーカーの4はどこにいったんでしょうか?

例 題 B1.34 考え方) Un+1=pan+f(n) (p≠1) **** =3, an+1=3an+2n+3 で定義される数列{an}の一般項 αを求めよ. [答] 漸化式 an+1=3an+2n+3 において,を1つ先に進めて+2 と α+)に関す ある関係式を作り, 差をとって,{anti-an}に関する漸化式を導く 答 2α に加える(または引く)nの1次式pn+g を決定することにより、 {an+pn+g}が等比数列になるようにする。 10+1= 30+2n+3 ・・① より、 ante = 3an+1+2(n+1) +3 ...... ② に ①より、 mimi www www an+2-an+1=3(anan)+2l bantiman より, とおくとか考休み、 b=a-a=3a,+2+3-q=11 b+1=36+2, b₁+1=12 bw+1+1=3b"+1), したがって、数列{6m+1} は初項 12, 公比3の等比数列 だから, bm+1=12.3" =4・3" b=4.3"-1 n2のときの係数) n-1 ②は①の を代入したもの +1 差を作り”を消去 する ①より. a2=3a,+2+3=14 α=3α+2 より +m+α=-1 12.3" =4・3・3"-1 (1 12(3"-1-1) =4.3" k=1 カ=-1 3-1 (n-1) n-1 a=a+b=3+Σ(4-3-1)=3+ k=1 第8章 =6・3"-1-n-2=2.3"-n-2 n=1のとき, a1=2・3′-1-2=3より成り立つ。 よって, an=2・3"-n-2 6.3"-12・3・3-1 =2.3" 十四十 n=1のときを確認 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと an+1=3a+2pn+2g-pおけば an+1+pn+p+q 23=3a + 3pn +3q = もとの漸化式と比較して、 2p=2, 2g-p=3より、p=1,g=2 したがって,att(n+1)+2=3(an+n+2) 4+1+2=6=34.+2pn より,数列{am+n+2}は初項 6, 公比3の等比数列 an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式) 差を作り, n を消去して階差数列を利用して考える +2q-p よって,an+n+2=6・32・3" より Focus 注) 例題 B1.33 (B1-63) のように例題 B1.34 でも特性方程式を使うと, α = 3α+2 +3 よ 3 ant h₁ α=-n-2 3 となる. これより, 順番になっていない と変形できるが, 等比数列を表していないので、このことを用いることはできない. +2 注意しよう [[[]] [Bl 解説参照) よって定められる数列{am}に R1

解決済み 回答数: 1
数学 高校生

なぜ弦の長さを2lと置くのですか?

解答 円 ②の中心 (0, 0) 直線 ①の距離は, |2| √2+(-1) |2| 2 √55 == 求める弦の長さを2ℓ とすると,円の 半径が22より Think 例題 89 弦の長さ(1) **** 直線 y=2x+2 ① が円 x+y'=8......② によって切り取られて できる弦の長さを求めよ. 考え方 図に描いて考える. 円の中心と弦の距離を求めて, 三平方の定理を利用する. y=2x+2 より 2x-y+2=0 2ℓ とおくのがポイ ント ay 2√2 2√2 2√2 M €² + (√²²)²= (2√2)² 2 x 8= (22) 2 V ME) 36 + 三平方の定理 5 lo より l= =6√5 5 よって、 弦の長さ 2ℓ は, 12/5 5 (別解) ①を②に代入して, x2+(2x+2)2=8 YA 求める長さは2ℓで あることを忘れずに、 解と係数の関係を利 (3,23+2)用する解法 5x2+8x-4=0 ・③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (3,2β+2) とす ると,,βは2次方程式 ③ (a,2a+2) E) ふん」の2つの解だから,解と係数の関係より, ちょう 8 α+B=B=14 4 5 長さを l とすると, x Bax²+ bx+c=0 0) 2つの解をα βと すると (E)-(a+B=-- l°=(β-α)+{(2β+2)-(2α+2)}=5(β-α)2 (3-α)a= a aẞ= 55のときだす =5((a+3)-4aß)=5(-)-4()} 2 144 三平方の定理 よって、l>0より、弦の長さは, 12/5 Focus I+ awo+m 弦の長さの問題は、円の中心から弦に垂線を引き、 三平方の定理を利用する D>m> l²+d²=r² 接点の直

未解決 回答数: 1
数学 高校生

数Bの数列の質問です 聞きたいことは3つあります ①(1)の緑マーカーを引いている(2×2^(n-1)-1)はどうやって出てきたのか ②(2)の緑マーカーを引いている489項はどうやって出すのか ③(2)の黄色マーカーを引いているシグマの計算のやり方 この3つを教え... 続きを読む

例題 B1.29 群数列(2) ***** 2の累乗を分母とする既約分数を次のように並べた数列について, 1 1 3 2'4'4'8'8 5 13 3 71 5 15 ...... 8'8' 161604032 (1) 分母が2" となっている項の和を求めよ.xx (2) 初項から第1000項までの和を求めよ。 手大) 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 4個 いとか考える。S-8個目番 1個 2個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると、第群には、 分母が 2" の分数が 2"-1個あることがわかる.さらに,分子に着目すると、 (7) 11, 31, 3, 5, 71, 3, 5, 7, 9, 11, 13, 15 となっている 解答 (1) 分母が2である分数をまとめて第ん群とする数 列を考えると, ) 200 となり、分母が 2" の分数は 27-1個あり 11 31357 3 5 15 | 1 2 4'4 8'8'8'8 16'16'16' S1 TOS 16 32' 1個あり、分子は初 項1, 公差2の等差数列になっているから、その和 は, 等差数列の和 n(a+e) S を利用 2 どうやって出てきた 2n 2"=2"-25 (2) 各群の項数は, 1, 2, 4, 8, 16, ・・よりは、 1-(2-1) 第n群までの項数の和は、 2-1 1+3+5+・・・ +(2.2"-1-1)22-2 分子 1+3+5+...... ので、第1 +(2·2-1-1) 2"-1 (1+2・2"- '-1) 2 =2"-11022-2 第1000項が第何群に入 どうやって出す? 2°-1=511, 2-1=1023 より 第1000項は第 10群の第489項なので,求める和は第9群までの 和と第10群の第489項までの和となる -2 3 9770+ っているかをまず調べる。 1 22-2は初項 公比 224+ (2+2+1+20001027 2の等比数列の初項から 第9項までの和 よって, k=1 びじゃないのに 1 (29-1) F どうやって計算? 11 + .489.(1+977) 2-1 2102 511 4892 500753 より 初項 1.末項 977, = ++ 2 1024 1024 2月1 Focus 分数の群数列は分母, 分子に着目して見抜く 1+3+...... +977 は, 項数 489 等差数列の和 **) ついて、

解決済み 回答数: 1
数学 高校生

数Bの数列の問題です この問題はなにを求めるのかがよく分かりません めちゃめちゃ初歩的な事だと思うんですけど教えていただけると嬉しいです!

B1-48 (518) Think 例題 B1.27 いろいろな数列の和(2) S„=1−22+32-4°+....+(-1)" を求めよ **** nが偶数か奇数かで [考え方 S, は数列 am=(-1)*+1㎡の初項から第n項までの和であるが、n その和を分けて考える必要がある nが偶数、つまり、n=2mmは自然数のとき, 解答 Szm=1-2°+3°-4++ (2m-1)-(2m) 第2m =(12°)+(32−4°) ++{(2m-1)−(2m)} nが奇数,つまり,n=2m+1のとき wwwwwwwwwwwwww 第 3 項 Szm+1=12-2+32-4++ (2m-1)-(2m)+(2m+1)2 t -第 (2m+1) 項 =(1-2)+(3-4)+…+{(2m-1)-(2m)}+(2m+1)2 FL m III wwwwwww nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−22)+(32-4) +... +{ (2m-1)-(2m)2} wwwwwwwwwwww m m ={(k-1)-(2k)}=2(-4k+1) k=1 k=1 =-4 4.1.2m(m+1)+m=-m(2m+1) 2m(+1)+ n=2mより,m=nを①に代入して, == …② n=2,4,6, 数列 {(2m-1)²-(2m) の初項から第 m項ま での和と考える. ...① me 和はnで表す. になる。 -2m-m mm1 nが奇数のとき, n=2m+1(mは自然数) とおくと, wwwwwwww Sn=S2m+1=(1²-22)+(3²-4²)+) (+)(-s)- +{(2m-1)-(2m)2}+ (2m+1)^ =S2m+(2m+1)=-m(2m+1)+(2m+1)^ =(m+1)(2m+1) _1. ③ n=2m+1 より,m=1/2(n-1) ③に代入してxs S=(1/n+1/2)(n-1+1)=1/2m(n+1) ④は n=1のときも成り立つ n=3,5,7, 塩だなあない場合 x(E- (x)= よって、②より,S,=(-1)+1.1 S=(-1)+(n+1) Focus n=1 とすると, 11/21.2=1 場合分けした②④ の形のままでもよい。 が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2+

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

F1a-157 (2)なのですが、なぜ100円玉一枚をを50円玉二枚として考えるのですか? 100円玉そのままではいけない理由が知りたいです どなたかすみませんがよろしくお願いします🙇‍♀️

Think 157 支払える金額の種類 **** 硬貨の枚数が次の場合のとき、支払える金額は何通りあるか。 ただし 「支払い」とは,使わない硬貨があってもよいものとし、金額が1円以上の 場合とする中、 1100円硬貨が3枚, 50円硬貨が1枚, 10円硬貨が2枚 100円硬貨が4枚, 50円硬貨が2枚, 10円硬貨が3枚 (2)100円硬貨1枚の場合と、50円硬貨2枚の場合は、同じ「100円」を表す. 「50円硬貨2枚」 を 「100円硬貨1枚」と考えてしまうと,「50円」のように表せな い金額がでてしまうので、大きい金額の硬貨 「100円硬貨4枚」を小さい金額の硬 「50円硬貨8枚」と考えて,全部で 「50円硬貨 10枚,10円硬貨3枚」とする。 このように考えると,「3種類の硬貨の使い方」 で表現できる「支払える金額」は一 通りに定まる. 考え方 それぞれの硬貨の使い方が何通りあるか求め,積の法則を利用する 「解答 10円硬貨 2枚の使い方は, 0~2枚の 4×2×3=24 (通り) (1)100円硬貨3枚の使い方は, 0~3枚の4通り 50円硬貨1枚の使い方は, 0, 1枚の 異なる硬貨で,同じ 2通り 金額を表すことがで 3通り 川は50円(枚 やけど(2)は2枚 よって、「支払い」は1円以上より,求める総数は, 24-1=23 (通り) きないので,それぞ れの場合を考える。 積の法則 525 50円硬貨 10 枚の使い方は, 0~10枚の11通り 10円硬貨3枚の使い方は, 0~3枚の 4通り 11×4=44 (通り) より (あるから、(00円) 100円硬貨1枚」 と 「50円硬貨2枚」のとき同じ のverがある。 金額 「100円」 を表すので、 「100円硬貨4枚」を「50円 硬貨8枚」と考える。 どの硬貨も使わない 「0円」の場合を引く. 30 もとの50円硬貨 2 枚と,100円硬貨を 50円硬貨とした8 枚の計10枚 第6章 よって,「支払い」は1円以上より, 求める総数は,積の法則 44-1=43 (通り) 「0円」の場合を引く. Focus 一般に, 「100円1枚は50円2枚」 のように小さい金額の硬貨とし て考えると, 支払える金額は一通りに表せる 謎》例題 157 (1) では 「10円硬貨が2枚」 なので、30円や90円など、表すことができない金 額がある.

解決済み 回答数: 1
数学 高校生

Focus Gold数II・Bの問題です 矢印が書いてある部分の途中式が分からないのですがどなたか教えていただけませんか?

練習 第3章 図形と方程式 127 Step Up +5 章末問題 77 (1)3点A(2, 1), B(-4, 4), C(t+1,3t+5) が一直線上にあるように, 定数tの値を定めよ. 55 (2)異なる3点A(1, -3), B(t. t-3). C(t+2.2t-1) が一直線上にあるように,定 数tの値を定めよ. (1) 2点A(2, 1), B(-4, 4) を通る直線の方程式は, |t=-1 のとき, C(0, 2) U+YA 4-1 y-1=- -4-2 (x-2)より、 x+2y-4=0 06S+5066 B (21 C 点C(t+1,3t+5) がこの直線上にあれば, 3点は一 直線上にあるから, (t+1)+2(3t+5)-40より、 2 S-4 O 2 7t+7=0 よって t=-1 別解 直線AB と直線ACが一致するときを考える。 直線AB の傾きは, 4-1 1 -4-2 2 直線ACの傾きは, (3t+5)-1 3t+4 (t+1)-2 t-1 1 3t+4 よって, より. t=-1 2t-1 直線AB と直線ACは傾きが 等しく, ともにA(2, 1) を通 る直線となる. ABの傾き1/2と一致すると きを求めるので,t+1=2の 場合だけ考えればよい. 3 (2) t=1のとき, 3点A(1,3), B(1, 2), C(31) は 一直線上にない. t≠1 のとき, 2点A(1, -3), B(t, t-3) を通る直線 の方程式は, y-(-3)=- (t-3)-(-3) t-1 (x-1) より y+3=- +1(x-1) 点C(t+2,2t-1) がこの直線上にあれば、3点は一 直線上にあるから, 2点B,Cのx座標は異なる ので、直線BC の方程式を求 めて, 点Aがこの直線上の 点であることからの値を求 er めてもよい t 2t-1+3= F-1(t+2-1) ② 途中式は? 2(t+1)(t-1)=t(t+1) t=-1 のとき,AとCは一致する. よって, tキー1だから, 2t-2=t よって, t=2 別解点 B, C のx座標が異なるので, 3点A, B, C が一直線上にあるとき, 直線AB, AC はy軸と平 行でない. t≠-1より、両辺を t+1 で 割る. t=2 のとき, B(2,-1), C(4.3) YA 3 また, AとCは異なる点なので, 直線ABの傾きは, tキー1 (t-3)-(-3) ... ① t-1 t-1 直線ACの傾きは, (2t-1)-(-3)-2(t+1) -=2 (t+2)-1 t+1 2 10 4 B ......2 (+£ 8-3A

解決済み 回答数: 1
数学 高校生

F1a-22 2つ質問があるのですが、 ①(1)(2)のところなのですが、2枚目の写真のようにきれいな形にしてはいかない理由を教えて欲しいです。 ②(3)なのですが、1枚目の緑で引いてるように考えれる理由がわかりません。また、解説の解き方もわからないので教えて欲しいです... 続きを読む

例題 22 不等式の性質 **** 3<x<6,2<y<6 である2つの数x, yについて,次の式のとり得る値 の範囲を求めよ. (1) x-4 (2) 2x (3)x+y> (4)(5)2x3y 考え方 不等式の両辺に負の数を掛けると、不等号の向きが変わる . a<x<b,c<y<d=a+c<x+y<b+d などの不等式の性質をきちんと理解すること. <0のとき (OSA) A a<b A) A ↓ ma>mb |解答 (1) 3 <x<6 の各辺から4を引いて 3-4<x-4<6-4 12 かんたんにしたら× 2 3<x<6 の各辺に2を掛けて 6<2x<12 たして、1番 小のやう ○x+y<○ たしてし番大 (3) 3 <x<6 の各辺にyを加えて 3+y<x+y<6+y ...... ① ここで,2<y より, 3+2 <3+y y<6 より, 2x3<2xx<2x6 |3<x<6,2<y< の各辺を加えて、 5 <x+y<12 6+y<6+6 としてもよい。 ひい? よって, 5<x+y<12 したがって, ①より, 5<x+y, x+y<120 (1) ○xO (4) 2<y<6 の各辺に-1を掛けて、上 ※スからりを1番大つまり, 4112 -2>-y-601 -6<-y<-2 負の数を掛ける 不等号の向きが わる. ひくのを忘れる したがって, 3<x<6, -6<-y<-2より, 3+(-6)<x+(-y)<6+(-2) ti 3-2<x-y<6 よって, -3<x-y<4 (4)と同じかんじ(5) (2)より 6 <2x < 12 <y<6 の各辺に -3 を掛けて -6>-3y>-18 より、 1 <xy としてはダメ 不等号の向きか -18 <-3y<-6 わる. 2.不 したがって, 6<2x<12, -18<-3y <-6より, 6+(-18)<2x+(-3y)<12+(-6) よって, -12<2x-3y<6 Focus a<b,c<d⇒a+c<b+d a<b, c<d ⇒ a-d<b-c 小一大<大小 0<a<b,0<c<d⇒ ac<bd -1<x<3, 2<y<5 である2つの数x,yについて、次の式のとり得る値 練習 22 を求めよ. ** (1) x +4 (2)3y (3) -x+y (A)

解決済み 回答数: 1