学年

教科

質問の種類

英語 高校生

Task1は問題の意味はわかったのですが、上の疑問文を使ってどう書けば良いのかわからないので教えて欲しいです🙇‍♀️ Task2のほうは自分の回答があってるか見て欲しいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

ナウン クローズ 単語のあつまり 主語 と動詞 それ自身 では として A noun clause is a group of words with a subject and verb. A noun clause cannot stand by itself as a 独立できん sentence. 従う 私が提案することはつづける? T A subject of a verb 06956 An object of a verb A subject complement 補 66968 前置詞 An object of a prepositio 446307 An adjective complement アドジェクティブ 異なる食事を What I suggest is following a different diet. I don't think that I want to exercise. Your problem is that you need some motivation. 変える You can change your weight by what you eat. よってあなたが何を食べるかに Everyone is glad that Betty is getting married. That noun clauses usually follow... S+ V agree, believe, decide, guess, hope, think, suggest ... 学校のために I agree that we need more teachers for the school. S+ be verb + adjective afraid, angry, glad, worried, sorry, sure, surprised. . . 招待する 食 Tommy was surprised that you didn't invite him to your wedding. It + be verb + adjective amazing, clear, good, important, necessary, possible, true... It is possible that we'll have to take the exam in February. 可能がある Task 123 しげんをうけなければ いけない 名詞節 Complete the sentences using a noun clause. ex. Where did Gareth learn how to skate? → I wonder where Gareth learned how to skate. 1. How did he get the job? 2. Why is that woman standing outside? → He is curious about 3. We need to take out the trash tomorrow. → It is important Task 2 Circle the answers. is a mystery. I lost my mother's ring. She asked me where a. is her ring b. her ring was c. is your ring d. was her ring 3 The little boy next door is popular, but I don't know how many a. friends does he have b. friends has he c. does he have friends d. friends he has 2 The neighbors are playing their music loudly. I can't hear what a. is saying you b. you says you are saying d. that you says 4 I'm not going to fix up my apartment. is too expensive. 私がしたいこと a. Whether I want to do (b. What I want to do c. What do I want to do d. That I want to do

解決済み 回答数: 1
数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

未解決 回答数: 1
数学 高校生

解説お願いします。 黄色マーカー以前までは理解出来たのですが、黄色マーカーから紫マーカーへの流れがよく分からないです。 教えていただけると嬉しいです。 よろしくお願いします。

第1講 確率と漸化式 1 図のように、正三角形を9つの部屋に辺で区切り,部屋 P, Q を定める。 1つの球が部屋Pを出発し, 1秒ごとに,そのままそ の部屋にとどまることなく, 辺を共有する隣の部屋に等確率で 移動する. 球がn 秒後に部屋 Q にある確率を求めよ. P Q 《12 東大理科文科》 【著】3(金) 11- (nが偶数のとき) (nが奇数のとき) 【解説】 右図の様に P と Q 以外の部屋を定める. 最初に球はPの部屋にあることより, nが奇数のときには球はP,Q, R以外の部屋にあり, nが偶数のときには球はP,Q,R のどこかの部屋 にある. 以下を偶数とする. m+2秒後にQ の部屋に球があるのは 1 (I) m秒後にPにあり,確率 3 でAに移動して、確率 1/12 で Q に移動する. 1 (II) m秒後にQにあり,確率 でAに移動して、確率 1/12 でQに移動する。 3 1 (III) m秒後にQにあり,確率 でBに移動して,確率1でQ に移動する. 3 1 A R Q B (IV) m秒後にQにあり,確率 でCに移動して、確率 1/2でQに移動する。 3 (V) m秒後にRにあり、確率 1/3でCに移動して、確率 1/1 -で Q に移動する. の5つの場合だけ考えればよいので, n秒後にP,Q,R にある確率をそれぞれ Pn, Qn, Rn とすると, Qmtz=Pmx/1/31/1/2+Qmx1/2×1/28+Qmx/3×1+Q×1/2×1/2+Rmx/1/3×1/2 6 Qmtz=2/12 (Pa+Rm)+/Qm 2 3 が成り立つ。ここでPm+Qm+Rm=1よりPm+Rm=1-Qm を代入すると Qm+2=1/03(1-Qm)+/30m 6 ⇔ Qm+2= Qm + 2 == 1 | Qm + 1/14 2 6 ⇔ Qm Qm+2- + 2 − 1 = 1 ½ (Qm −1 ) ---① dm - 3 2 となり,最初球がPにあることよりQ = 0 と定めることができるので,Q=0と① より Q2n = {1-(2)"}

解決済み 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
数学 高校生

(2)の問題で、なぜこのようにnを3で割ったときの場合分けをするのか、分かりませんでした。解き方の理由を含めて教えてください。

解 思考プロセス 例題 57 倍数であることの証明 nが整数であるとき, 次のことを証明せよ。 (1)nnは6の倍数である。 逆向きに考える 6 の倍数であることを示すためには? (2) (a) 6 × ( の形になる この とするか? (2)23+3m²+nは6の倍数であるこ (b) 連続する3つの整数の積である (C)「2の倍数」 かつ 「3の倍数」 である moin 201 (D) いずれかを示す。 Action» 連続する 個の整数の積は, m! の倍数であることを利用せよ (1)n-n=n(n-1)=(n-1)n(n+1) (n-1)n(n+1)は連続する3つの整数の積であり,この 3つの整数の中には、2の倍数, 3の倍数がそれぞれ少な <くとも1つ含まれるから 6の倍数である。 よって、n-nは6の倍数である。 (2) N = 2n+3n2+n とおくと N = n(2n²+3n+1)=n(n+1)(2n+1) ( 与えられた式3-nを因 A 数分解する。 一般に、連続する”個の 一般に, 連続する個の 整数の積はm! の倍数と なる。 2 == n(n+1) は連続する2つの整数の積であり,n, n+1の いずれかは2の倍数であるから, Nも2の倍数である。 例題 次に 56 (ア)n=3k(kは整数) のとき N = 3k(3k+1)(6k+1) (イ)n = 3 +1(kは整数)のとき I+(4-8) N=(3k+1)(3k+2)6k+3)=3(3k+1)(3k+2) (2k+1 (ウ) n=3k+2 (kは整数) のとき N=(3k+2) (3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) んは整数であるから、(ア)~(ウ)のいずれの場合も N は3 の倍数となる。 したがって, 2n+3n+nは6の倍数である。 nを3で割ったときの余 りで場合分けして考える。 一類す こと

未解決 回答数: 1
数学 高校生

なぜ、ピンクのマーカの傾きから、Y切片の最大が、わかるのですか?よろしくお願いします

口 をまとめたものである。 製品X 製品Y 1日に仕入れ可能な量 原料α 2kg 5kg 20kg 原料 b 3kg 24 kg 標準プラン100共通テスト 問題50] ある工場では2種類の製品 X,Yを製造している。 次の表は ・各製品を1kg 製造するのに必要な原料 α, b, c の量 ・各原料の1日に仕入れ可能な量 各製品の1kgあたりの利益 原料について 04y12 すなわち (1)①から1/3xy-1232x+4 よって、領域 Dは図の斜線部分のようになる。 ただし、境界線を含む。 よって、与えられた10個の点のうち、 (1,3),(2,3),(4, 2), (5, 2), 点 (7,1) の5個が領域Dに含まれる。 (2) 1日あたりの2つの製品の利益の合計は6x+9y万円であ る。 9 2 原料 4kg 12kg 6x+9y=k ④ とおくと,これは傾きが 切片 (7, 1) 利益 6万円 9万円 が 今の直線を表す 。 x, yは実数とする。 1日に製品 X を xkg, 製品 Y をykg 製造するとき, 1日に仕入れ 可能な量から、次の不等式①~③ が成り立つ。 9 + アスナイy 20 ① 直線 ④ が領域 D と共有点をもつようなkの値の最大値が 利益の合計の最大値である。ただし,各原料は1kg単位で使用するから, 領域Dとの 共有点は格子点に限る。 したがって, 直線 ④ が領域 D内の点 (7, 1) を通るとき,その (1) 連立不等式①〜③の表す領域をDとする。 次の10個の点のうち、領域Dに含ま れる点はオ 個ある。 ⑤ 切片 を1kg 製造するとき利益の合計は最大で, 51万円である。 次に, 原料が20kg しか仕入れられないとき 03x20 20 3 は最大となり,k=6・7+9・1=51 である。つまり、製品X を 7kg, 製品 Y (0, 4), 1, 3), 点 (2,3), 点 (3,3), 点 (4,2), (5,2), (6,2), 点 (7, 1), 点 (8, 1), (9,0) (2) 各原料は1kg単位で使用するものとする。 1日あたりの2つの製品の利益の合計は カナ キ(万円) であるから、 1日の利益の合計を最大にするには製品 X を ク kg, 製品 Y をケ kg 製造すればよく, 利益の合計はコサ万円である。 ところがある日、 原料の仕入れ先から 「今日は,原料が20kg しか仕入れられな kg, い。」との連絡があった。 この日の利益の合計を最大にするには製品 X を シ 製品 Y を ス kg 製造すればよく, 利益の合計はセソ万円である。 (3) 各原料が100g単位で使用できる場合は, 1日の利益の合計を最大にするには製品 X を タ kg 製品Y を チツテg 製造すればよく, 利益の合計は トナ万 千円である。 解 各原料の1日に仕入れ可能な量の条件から 原料 α について 02x+5y 20 ....... ① 原料について すなわ 10 このとき, 連立不等式①、③, ⑤の表す領域は右の図の斜 線部分のようになる。 ただし,境界線を含む。 よって,直 線 ④が領域内の点 (5,2)を通るとき,その切片は最大と なり,k=6・5+9.2=48 である。 つまり、 製品 X を 5kg, 製品 Y を 2kg 製造するとき利益の合計は最大で, 48万円 である。 (3)各原料が100g単位で使用できる場合は, 直線 ④ の傾き 3 と領域 D の境界線 2x+5y=20の傾き1/3について 21/31/3であるから,直線 ④は領域 D内の点 (8, を通るとき,その切片は最大となり, 4 4-5 =6.8+9=55.2である。つまり、製品X を8kg,製 yt 20 品を 12/3 kg すなわち 800g 製造するとき利益の合計は最大で55万2千円である。

未解決 回答数: 1
英語 高校生

一時的性質を表す時は後置修飾ならばhidden treasureではなくてtreasure hiddenの方が良いと思ったのですがどのように判断すれば良いでしょうか?教えて頂きたいです。よろしくお願いいたします。

① 名詞の前から修飾する場合 He was looking at the burning fire. 彼は燃えている火を見つめていた。 They found a hidden treasure. 彼らは隠されている財宝を見つけた。 [fire と burn が能動関係] [treasure と hide が受動関係〕 【注1】 分詞が形容詞として働き、名詞を修飾する用法。 原則として、分詞が単独に用い られる場合は名詞の前から修飾する。ingin 【注2】修飾される名詞と分詞の間に能動関係が成立する場合は現在分詞, 受動関係が成 立する場合は過去分詞を用いる。 【注3】 自動詞の過去分詞は完了の意味を表すことがあるが, fallen, gone などの限られた 動詞にしか用いられない。 以下の例文では,自動詞 fall 「落ちる」 の過去分詞 fallen は 「落ちてしまった」 という意味で後ろの名詞 leaves を修飾している。 We walked on the fallen leaves. 私たちは落ち葉の上を歩いた。 #101 ex) & He is gone e 名詞の後から修飾する場合 He was looking at the fire burning brightly, antalon [fire と burn が能動関係〕 彼は赤々と燃えている火を見つめていた。in They found a treasure hidden in the cave, add (treasure と hide が受動関係] 彼らは洞穴に隠されている財宝を見つけた。ATER 【注1】 同様に, 分詞が形容詞として働き,名詞を修飾する用法。 原則として、 分詞が目 的語・補語・修飾語を伴う場合は名詞の後から修飾する。 【注2】 修飾される名詞と分詞の間に能動関係が成立する場合は現在分詞, 受動関係が成 立する場合は過去分詞を用いる。 look at those working man (恒常的性質) | 《補語となる分詞》 ① 主格補語となる分詞 その単品でも 後ろから飾しょくする場合 people walking seem very tined (一時的性質) Othe person involved X the involved person The teacher kept talking to the children! 先生は子供たちに話し続けた。 F ⑧ The teacher remained surrounded by the children. od 90 lo ju bois W 絶対一時的な の VoCo farl 先生は子供たちに囲まれたまだった。 絶対にない!

解決済み 回答数: 1