学年

教科

質問の種類

数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
化学 高校生

(5)の0.72×10^5paの出し方が分からないです。それと、(5)で水が飽和蒸気圧に達しているとわかったのは何故ですか?教えて頂きたいです。よろしくお願いします。

8 温度 57℃において,分圧 X10 らなる混合気体が入っている円柱状の容器 1~4 がある。 容器 1~4に対して以下に示す 操作を行うものとして (1)~(5) に答えよ。 なお, 57℃での水の蒸気圧を0.170×105 Pa, -3℃での氷の蒸気圧 (昇華圧) を0.00530×105 Pa とする。 また, アルゴンはすべての 容器中で常に気体として存在する。 気体はすべて理想気体であるとし、 混合気体の全圧と各成分気体の圧力の間にはドル トンの分圧の法則が成立するものとする。 水および氷の体積は無視する。 また, 気体ア ルゴンの水あるいは氷への溶解も無視する。 各容器に対する操作 [容器1] 容器の体積一定のまま, 容器全体を90℃に保つ。 [容器2] 容器の体積一定のまま, 容器全体を -3℃に保つ。 [3] 容器内の温度を57℃に保ち、 容器の体積を半分にする。 [容器4] 容器の体積一定のまま, 容器の上半分を57℃に下半分を-3℃に保つ。 (1)容器1に対する操作を行ったときの, 容器内の全圧 (Pa) を求めよ。 (2)容器2に対する操作を行ったときの、 容器内の全圧 (Pa) を求めよ。 (3)容器3に対する操作を行ったときの, 容器内の全圧 (Pa) を求めよ。 (4) 容器4に対する操作を行ったときの、 容器の上半分と下半分に存在するアルゴンの 原子数の比を求めよ。 (5)容器4に対する操作を行ったときの, 容器内の全圧 (Pa) を求めよ。 277 90

回答募集中 回答数: 0
生物 高校生

(2)と(3)が難しくて良く分かりません!ゲノムや遺伝子、塩基対など用語がたくさんあって違いが分かりません🥲助けて下さい!

98 ゲノムと遺伝子/ 生物は,それぞれの個体の形成, 維持, 繁殖などの生 命活動に必要なすべての遺伝情報を含んだ DNA をもっている。 このような DNAの1組をゲノムという。 真核生物の体細胞には,通常、 同じ大きさと 形をもった染色体が1対ずつ存在するので、2組のゲノムがある。ゲノムの DNA 塩基対の数は,生物種によって大きく異なる。現在、1000種以上の生 物でゲノムの塩基配列が調べられており、ゲノムを構成する塩基対や遺伝子 の数が明らかになっている。 たとえば、イネのDNAの全塩基配列は2004年 に完全解読され,1組のイネゲノムは 3.9 × 108 塩基対からなり,その中に 約32000個の遺伝子が存在すること等が明らかになっている。 (1) 上の文の下線部a 「同じ大きさと形をもった染色体」を何というか。 (2) 上の文の下線部b に関して イネの体細胞の核にあるすべてのDNAを つなぎ合わせていくと, およそ何cmになるか。 四捨五入して、整数で答 えよ。なお, DNAの隣り合うヌクレオチド間の中心と中心の距離は 0.34nm (1nm=10-m)であるとする。 (3)イネの体細胞には12対24本の染色体が存在し、 分裂中期の染色体の平 均長は4.0μm とされる。 イネの染色体1本に含まれるDNAの平均長は, 染色体の平均長の何倍になるか。 四捨五入して, 有効数字2桁で答えよ。 (21龍谷大) (1) (2) (3)

回答募集中 回答数: 0
数学 高校生

考え方で、⑴では、最大値が負であればよくて、⑵では最小値が正であればよいとありますが、どっちが最大値でどっちが最小値でみるのか、見分け方はありますか?(負であればよい、正であればよいという部分は、不等号の向きできまっていると思うのでわかっています) また、⑵で、場合分けを... 続きを読む

Dark 例題 75 ある区間でつねに成り立つ不等式 次の条件が成り立つような定数の値の範囲を求めよ。 **** 125x で、つねに が成り立つ。 4ax+4g+8<0 2x、つねに が成り立つ。 4ax+4g+8>() 第2 考え方 グラフで考える。/(x)=xax+44 +8 のグラフは下に凸 区内での人質が息であればよい。 であればよい。 (2)区内での最小 f(x)=(x-24-40°+40 +8 f(x)=x-4ax+40 +8 とおくと (1) y=f(x)のグラフは下に凸なので 2 である. 6での最大値(2)または(6) つねに f(x) <0 となる 条件は、 A どちらも負になれば よいから、場合分け はしない。 f(2)=-4q+120 (6)=-20a+44 < 0 これをともに満たすのは、 a>3 (2) y=f(x)のグラフは下に凸で,軸は直線x=24 (i) 2a <2 つまり α <1 のとき 26 での最小値はF(2) よって, 求める条件は, 下に凸なので、最小 となるのは軸. 左端 x=2. 右端x=6の いずれか (2)=-4a+12> 0 したがって a<3 26x 軸の位置で3通りに 場合分け これと a <1より, a <1 (ii) 2≤2a≤6) 1Sa≤3 よって、 求める条件は, f(2a)=-4a²+4a+8>0 必ず、場合分けした 範囲と合わせる。 2x6 での最小値は(24) したがって,-1<a<2 2 2a 6x これとsaより, 1sa <2 (i) 6 <24 つまり 4>3のとき 2x6 での最小値は (6) a-a-2<0 (a+1)(a-2)<0 -1<a<2 よって、求める条件は, f(6)=-20g+44 > 0 したがって, a<1 これとα>3 より 解なし よって, (i)(iii)より, a<2 (i) (日) 2 a ●場合分けしたものは、 最後はドッキング

回答募集中 回答数: 0