学年

教科

質問の種類

数学 高校生

新高1の入学前課題です。 ⭕️がついている問題のうち、青い丸がついていない4問を解説していただきたいです。(解説がついていない問題集なため)そして、5番の7分の13〜〜とかの問題は素直に割りまくるしかないのでしょうか?

問題 第2節 実数 43 第1章 13 7 を小数で表したとき, 小数第50位の数字を求めよ。 he → p.29~31 数と式 6 αが次の値をとるとき,|-3|-|a+2の値を求めよ。 (1) a=0 p.34.35 2a=-3 2 170 4 4 3 a=√5 が次の値をとるとき,(x+1)" の値を求めよ。 x=3 Op.37 2 (2)x=-1 (3) x=-√√5 次の(1),(2)の式を計算せよ。また,(3)~(5)の式の分母を有理化せよ。 (1) 2√/27-3√12+√54 √3-1 √8 → p.38~40 (2)(√3+√6) 2√3+√2 3-√3 √3-√2 √√6 (1-√3) 9 √2 =1.4142 とするとき, 次の値を小数第4位まで求めよ。 ただし, 必要であれば小数第5位を四捨五入せよ。 → p.39, 40 √2 2 3(√2-1) √5-√3 √5+√3 10 x= y= √5+√3 √√57√√3 のとき,次の式の値を求めよ。 p.41 x2+y2 xy+xy3 ((3) x y y x 11 実数aに対し, n≦a を満たす最大の整数nをαの整数部分といい a-nをαの小数部分ということにする。 たとえば, 3.1の整数部分は 3であり,小数部分は 3.1-3=0.1 である。 このとき、次の実数の整数部分と小数部分を求めよ。 (1) 1.25 (2)√3 (3) -3.1 (4) /10-3

未解決 回答数: 1
数学 高校生

44の問題が意味がわかりません。解説お願いします

標準」レイ 吸う 向か が、入 ニチ にい 11 条件と集合 42 [命題の真偽] 次の命題の真偽を答えよ。 (1) x=1ならばx+x2=0である。 (2)|x|>3ならばx>3である。 であるための必要十分条件である。 01482- 次の(1)(2)(3)(4)のそれぞれについて の中に適する番号を入れよ。ただし、 (1)の解答は①ではない。 (1)①は (2) □は②であるための十分条件であるが必要条件でない。 (3) □は③であるための十分条件であるが必要条件でない。 (4) □は②であるための必要条件であるが十分条件でない。 12 必要条件と十分条件 43 [必要条件と十分条件] [必修 テスト 次 ただしx,yは実数とする。 に適するものを下の①~④から選べ。 ① 必要条件であるが十分条件でない。 ②十分条件であるが必要条件でない。 ③ 必要十分条件である。 ④ 必要条件でも十分条件でもない。 (1) x=1であることは, x=1であるための (2)xy であることは,xy"であるための (3) x=yであることは, kx=ky であるための (4)x+y>2 かつxy>1であることは,x>1かつy>1であるための [必要条件 十分条件 必要十分条件] 実数a, b について、 次の5つの条件がある。 ① ab=0 ② a-b=0 ③ |a-b|=|a+6| ④a²+b²=0 ⑤a²-b²=0 20 1章 数と式 6140 140 13 逆・対偶 45 [否定] 次の条件の否定をつくれ。 (1) x < 0 または y > 0 (2) x=2かつy=1 46 [逆・対偶の真偽] 目 テスト 次の命題の逆・対偶をつくり, その真偽を答えよ。 「x=1 ならばx=x」 (U) HINT 42 命題が真であることは真理集合の包含関係からわかる。 偽の場合は、反例をあげる。 C 43gの真偽をはっきりさせる。 必要条件と十分条件を正しく判断しよう。 Q 1-14 44 la-bl=la+blは両辺を平方してみる。 1-14 45 「かつ」の否定は「または」 「または」の否定は「かつ」に変わる。 1-15 46 対隅の真偽はもとの命題の真偽と一致する。 1-16 12

回答募集中 回答数: 0