学年

教科

質問の種類

数学 高校生

次の問題で思考プロセスが青いところから下が何がしたいのかよくわからないのですがどなたか解説お願いします🙇‍♂️

思考プロセス an= = (+)" cos —— nx 2 COS nπとする。無限級数Σam の和を求めよ。 <ReAction 無限級数の収束 発散は,まず部分和 Sm を求めよ 例題111) 規則性を見つける YA n=3m-2 αの の部分は, n= 1, 2, 3, のとき 1 1 1 2 2 2' 2' をくり返す。 |場合に分ける ={1-(1)}/{1-(1)}+//{1-(1)} 3m =--{1-(/)} n→∞ のとき, m→∞ となるから 2 lim S3 = 7 2 n=3m 7 ここで. cos 1 より 10 1x 2 n=3m- 0≤ COS lim 12-00 1 (1/2) = 0 より, はさみうちの原理より an → 0 一方, Ssm-1= Ssm-αsm, Ssm-2=Ssm-1-asm-1 であり, In=3m n=3m-1(mは正の整数) の場合に分けて考える。 In=3m-2 (ア) S3m = a1+a2+as+..+α3 =(a1+a+…+α3m-2)+(a2+α+... +α3-1)+(as+a+..+α3m) n→8 → すべて一致すれば (イ) S3m-1= S3m-a3m= n→∞ その値が24円 (ウ) S32S3-1-43m-1=| n→∞ an n=1 解 S= ak とおくと, n=3mm は正の整数)のとき 数列{cos 2 MTが 3 12 4 = COS (2/2) COS2 1 2' 2 1 1,... の (1/2) くり返しになることに着 目して場合分けする。 cos COS4 Sam-cos+() cos+(½) 8 COS +(1/2)*cos 37 + (12)² cos 107 COS COS -π+ 3 +・・・+ 3m- ・1/11/2+(2)+....+(1/1) ***} =- +・・・+ (4)+ 3m COS2m² //{(1)+(2)+....+(1/1)} +・・・+ 3m-1 各{}内は,すべて 公比 t +{(12)+(2)+..+(1/2)}会 (12),数の等 3m 3 12/{1-(1/2)^} (1){1-(1)} 1 1 2 1-(1/2) 3 2 1 3 比数列の和である。 (1/2){1-(1)} + 1 3 no のとき αsm 0, αsm-10 であるから lim S3m-1=lim S3m-2 = lim Ssm したがって 2 19L-00 lim S. = (+) cos nx = COS Point 無限級数の計算の順序 2 7 例題116のPoint で学習したように, 無限級数では, 勝手に項の順 けない。 そのため, 結果は同じであったとしても、 次のように解答を 4 COS- acosx+(1) cosx+(2) cos = COS n=1 2 3 3 COS 14 +(1/2) cos/1/12+(1/2) 1 十 ={12+(1/2)+(2)+...}cos/3+{(1/2)+(1/2)+(- 1 2 (/)+ 1 8 3 +(+) cos+(4) 00810+ COS COS 3 COS 1 316 36 123 12 + ( 12 +{(1/2)+(1/2)+1 (-1/2)+ (2) 1 117 無限級数 1 nπ sin² 2 の和を求めよ。

解決済み 回答数: 1
数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0