学年

教科

質問の種類

数学 高校生

Step1から6の作図の方法がわかりません。特にStep2の円の書き方がわかりません。 自分で書いてみたのですが、Step2をまでを書いたのが写真の下のほうにあるのですが、答えにそのような図がなく、どのように書いたら良いのかがわかりません。

数学A (全問 答) 一つに 第1問 (配点 20) くされたマークして 半径が異なる2円の共通接線の本数は、2月の位置関係により、次のようになる。 ・共通接線の本数 (i) 互いに外部にある () 外接している (2点で交わる 半径が異なる2円の共通接線を作図したい。以下において、点C」を中心とする半径 の円を C1. 点C2 を中心とする半径1の円をC2とずる。 ただし、 とする。 (1) 2円が共通接線の本数の (i) の位置関係にあるとき、手順の (Step 1 ) ~ (Step 6) の順で共通内接線を作図する。 ・手順 A (Step1) 線分 2 を直径とする円をかく。 (Step 2) C を中心とする半径の円をかく。 (Step 3 ) (Step 1) の円と (Step 2)の円との二つの交点のうち、一方を Pとする。 (Step4) 線分 PC と円Cとの交点をQとする。 とし (Step 5) CO 点C2を通り、直線 PC に平行な直線と円Cとの二つの交点の うち,直線 PC に対して,点Cと同じ側にある点をRとする。 4本 3本 に答えてはいけませ の一つ下の桁を (Step 6) 直線 QR が求める共通内接線の1本である。 2本 (iv) 内接している (v) 一方が他方の内部にある O きは、250として許さない 小となる もう1本の共通内接線は, (Step 3) の二つの交点のもう一方をPとして 同じ手順で作図できる。 また. (Step 1)~ (Step 6) の順で作図した直線 QR が求 める共通内接線であることは,次のページの構想に基づいて説明できる。 (数学A 第1問は次ページに続く。) 1本 えるところを、2階のように 0本 共通接線に対して,2円が異なる側にあるようなものを共通内接線,2円が同じ側に あるようなものを共通外接線ということにする。 例えば,2円が () の位置関係にある とき,共通内接線の本数は1本, 共通外接線の本数は2本である。 Ci ro C2 (数学A第1問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0