学年

教科

質問の種類

数学 高校生

数Aの通過点の確率の問題です。 (2)なのですが、なぜ自分が解いた方法が間違っているのか教えてください。 よろしくお願いします。 〈(1)では、4回中1回が東なので、4C1としていたので同じように考えたつもりなのですが、、、〉

例題 230 通過点の確率 右の図のような道路があり, A地点からB地点まで 最短距離で移動する。 ただし,各交差点において東、 北のいずれの進路も進むことができるときは, 東, 1 北に進む確率はともに で, 一方しか進めない 2 きは,確率でその方向に進む。 (1) C地点を通過する確率を求めよ。 (2) D地点を通過する確率を求めよ 思考プロセス 問題を分ける (1) Cを通る確率= 3 A→C→Bの道順の総数 A→Bの道順の総数 (理由) A→Bの道順のうち, 右の図の 1,②の道順となる -(1/2)x1 4 X 15 →Bにおいて, とするのは誤り 確率は ①= ●では2方向に進むことができるが, ●では1方向にしか進むことができない。 となり,確率が異なる。←同様に確からしくない (2) 25 = (1/2)x11 1¹ A A →C ③の確率・・・ 4回の交差点で,東に1回,北に3回となる確率 いずれも2方向に進むことができる。 (2) 右の図の交差点をEとする。 (ア) A→E→Dの順に進む場合 1④ の確率・・・ どの道順でも必ずBにたどり着くから,確率1 (考えなくてよい) (2) Dにたどり着くまでの●の個数で場合分けする。 Action » 複数の交差点を通過する経路の確率は, 進行可能な方向に注意せよ 進むことができる交差点を, A も含めて4か所通過する。 この4か所の交差点で,東に1回、北に3回進むと C 地 点を通過するから, 求める確率は 3 C. (1/2)^(1/1)-1/14 E D その確率は (1) x1=1/6 (イ) A→C→Dの順に進む場合 その確率は, (1) の結果を利用して (ア),(イ)は互いに排反であるから、求める確率は 1 1 3 + 16 8 16 ■(1) C地点に到達するまでに, 東, 北のいずれの方向にも東北のいずれの方向に も進める交差点と東京 たは北にしか進めない交 差点がある。 例題231さ B 4個のさい (1) 目の最 (3) 目の春 × ²/1/12 = 11/12 のプロセス 条件の言 (1) 最大 (2) (1) C 「1. 「1 な 解 (1) C地点を通過した後のこ とは考えなくてもよい。 Acti (3) A E地点を通過するかどう かで場合分けする。 A地点からE地点に進む とき, 東, 北のいずれの 方向にも進める交差点を 4か所通過し、 すべて北 に進む。

回答募集中 回答数: 0
生物 高校生

(4)の問題の解説がよくわからないのでかみくだいて教えていただきたいです、!

例題1 酸素解離曲線 右のグラフは, ヘモグロビンが酸素と結合する割合 を示した酸素解離曲線である。ただし, 肺胞での酸素 素 濃度は100,二酸化炭素濃度は 40 また、ある組織で の酸素濃度は30, 二酸化炭素濃度は80 とする。 (1) 肺胞での酸素ヘモグロビンの割合は何%か。ビ 100 酸素ヘモグロビンの割合〔%〕 80-40 60 40 CO2濃度 (2) 組織での酸素ヘモグロビンの割合は何%か。 (3) 肺胞の血液が組織に運ばれると, 全へモグロビン 20 のうち何% のヘモグロビンが酸素を解離するか。 -CO2濃度 80- (4) 血液 100mL中のすべてのヘモグロビンが酸素と 結合したとき, 20mLの酸素と結合できるとすると 組織で解離される酸素は血液100mLあたり何mL になるか。 中① 20 40 60 80 100 酸素濃度(相対値) 解説 (3) 肺胞で酸素を受け取ったヘモグロビンの一部が、組織で酸素を解離する。 そ の割合は (肺胞での酸素ヘモグロビンの割合) (組織での酸素ヘモグロビンの割合)で 求められるので, 95-40=55) (4) (3)で求めた 55%は全ヘモグロビンに対する割合である。 全ヘモグロビンが酸素と結 合すると、血液 100mLあたり 20mLの酸素と結合できるとあるので、そのうち 55%が 組織で解離される。 よって, 20×55/100=11〔mL] となる。 2015 答 (1)95% (2) 40% (3)55% (4) 11mL

未解決 回答数: 0
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0