学年

教科

質問の種類

物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

画像の問題の問7の答えが③になる理由が分かりません。 解説をお願いしたいです。

第1問 図1のように、なめらかで水平な床の上に, なめらか な表面をもつ質量 M の台が水平に置かれている。 台の右側は, 点を通る紙面に垂直な軸を中心とした半径の半円筒状に, 直方体がくりぬかれた形をしている。 図1は床に鉛直な断面を 示しており、 面 AB は水平で, 曲面BCになめらかにつながっ ている。 点0を原点とし、 水平右向きにx軸, 鉛直上向きに y軸をもつxy座標をとる。 重力加速度の大きさはg とする。 床は十分広く、空気の影響は無視できるものとする。 運動はす べて図1の紙面内 (同一鉛直面内) で起きているものとし、 以 下の問いに答えよ。 [1] 台を床に固定し,質量mの小物体を面 AB上のある点から 速さで水平右向きにすべらせた。 小物体は半円筒に沿って 運動し、BC間の途中の点Dで台から離れ, 最高点 Qに達 したのち落下した。 x軸とODのなす角をα 点Dにおける 小物体の速さを 点Dから点Qまでに要する時間を する。 小物体の大きさは無視できるとする。 Vo B 床 図1 問1 小物体がBD間の∠BOP = 0 となる点Pにあるとき, 小物体の速さを 0, 1, g を用いて表せ。 問2点Pで小物体が受ける垂直抗力の大きさNを,m,vo, 0, l,g を用いて表せ。 問3 速さを, α, L, g を用いて表せ。 D 台 問4時間 t を,,αg を用いて表せ。 問5点Qの座標 (X, Y) が次の等式で表されるとき, gのうちから必要なものを使って書き表せ。 ① (5) の空欄に入る式または文字を,,,, X= ① × ② - ③ × ④ xt YQ = ① × ④ + ③ × ② xt- ⑤ x t² [2] 台の固定を外し、 静止した台の面 AB 上のある点から, 質量mの小物体を速さで水平右向きにすべらせた。 小物体は 半円筒に沿って運動してある高さまで上がったのち, 台から離れることなく折り返し, 半円筒に沿って降りて面ABに引 き返した。 小物体の大きさは無視できるとする。 問6 小物体が最大の高さに達したときの小物体の床に対する速さを 02, m,Mを用いて表せ。 問7面ABに引き返した小物体が,床に対して左向きに進むのは,mとMの間にどのような関係があるときか。 次の①~ ⑧のうちから最も適切なものを1つ選んで番号で答えよ。 (1 1 -M m<- (7) m<2M ② m> -M ③m <M 4 m > M ⑤ m<√M ⑥m> √2M ⑧ m>2M

回答募集中 回答数: 0
生物 高校生

生3-18 3枚目が私が解いた方法で、オキアミ→カタクチイワシの転換効率が10%だから100%にするには10倍かける必要あるから0.01ppm✕10がカタクチイワシ。 カタクチイワシ→ブリは20%だから100%にするには5倍かけるので0.1✕ 5ppmより正解は0.5ppm... 続きを読む

XX B ヒトの活動は,生態系にさまざまな影響を及ぼしている。 かつて殺虫剤や農薬と して使用された DDT により, 食物連鎖の高次消費者が激減したことがあった。 こ れは、特定の物質が、周囲の環境に含まれるよりも高濃度で生物の体内に蓄積され 生物濃縮という現象による。 る (b) また、ヒトの活動によって意図的に,あるいは意図されずに本来の生息場所から 別の場所に移され, その場所にすみ着いている生物は (c)外来生物とよばれる。近年, こうした外来生物が生態系に及ぼす影響が大きくなっている。 問5 下線部(b) に関連して, 図2は, 海洋における食物連鎖の一例を示す。図中 の矢印の先に示す魚は捕食者で,数値は捕食者を成長させる被食者の重量の転 換効率(%)を示す。 例えば, 転換効率が50%のときは,捕食者1kgの成長の ために被食者を2kg 捕食することが必要であることを示す。図2中のオキアミ の DDT 体内濃度が0.01 ppm とすると, 予想されるブリのDDT 体内濃度とし て最も適当な数値を,後の①~⑥のうちから一つ選べ。 ただし,被食者の体内 に含まれていた DDT のすべては捕食者に移って体内にすべて蓄積され, 捕食 者における DDT の分解・排出はないものとする。 なお, ppm は重量の割合を 表しており,例えば, 1 ppm は,体重1kgあたり1mg の DDT が含まれてい ることを意味する。 18 ppm Okg いる 10% 7103 10 オキアミ カタクチイワシ 20 DDT 0.01 ppm 6.01kg ブリ 10kg 図 2 50 0.05 ② 0.1 ③ 0.25 ⑤ 1.0 ⑥ 2.0 + 0.5

回答募集中 回答数: 0
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0