学年

教科

質問の種類

数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0
数学 高校生

高校数II2次方程式の解の存在範囲です。 下の写真の問題の(2)で、どうして赤波線で示した式になるのかがわからないです! どなたか教えてください🙇‍♀️

82 基本 例題 49 2次方程式の解の存在範囲(2) 300000 についての2次方程式(a+6=0が次のような解をもつよう な実数 αの値の範囲をそれぞれ求めよ。 (1) 2つの解がともに2以上である。 (2) 1つの解は2より大きく、他の解は2より小さい。 CHART & SOLUTION Op.76 基本事項 5. 基本 48 重要 4x2 定 CH 実数解 α β と実数の大小 a-k, β-kの符号から考える (1) 2以上とは2を含むから、等号が入ることに注意する。 a≥2, B≥2 (a-2)+(B-2)≥0, (a-2)(B-2)≥0) (2)α<2<β または β <2<α (α-2) (B-2) <0 解答 x2-(a-1)x+a+6=0 の2つの解をα, βとし, 判別式を Dとすると D={-(a-1)}2-4(a+6)=a2-6a-23 解と係数の関係により α+β=a-1, aβ=a+6 (1)≧2,B≧2 であるための条件は,次の① ② ③ が同 時に成り立つことである。 D≧0 (a-2)+(B-2)≥0 (a-2)(B-2)≥0 ① E+ ① 513 inf 2次関数 f(x)=x2-(a-1)x+a+6 このグラフを利用すると (1) D≧0, (軸の位置) ≧ 2, ƒ(2)≥0 a-1 2 D f(2) ①から a²-6a-23≥0 ゆえに a≦3-4√23+4√2 ≦a ②から at β-40 ゆえに よって a≥5. ⑤ ③から aβ-2(a+β)+4≧0 ゆえに a+6-2(a-1)+4≧0 ④ ⑤ ⑥ の共通範囲を求めて ・④ (a-1)-4≥0 よって a≦12... ⑥ 3+4√2 ≦a≦12 (2)α<2<β または β < 2 <αであるための条 3-4/2 件は(α-2)(B-2)<0 よって α+6-2(a-1)+4<0 これを解いて α>12 B 2 (2) f(2)<0 (p.765 補足 参照) 5 3+4/2 12 a ←このとき, D>0 は成り 立っている。 (p.754 解説 参照) 2 (x

未解決 回答数: 0
数学 高校生

この空白がわかる方いらっしゃいましたら教えてほしいです。

太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。α+β=4, a2+β2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2の係数が1であるとき, 2数α, βを解とする2次方程式は x2+ コx+ロコー =0であるから, αβ の値がわかればいいんだよね。 花子 : αβ を求めるために, α2+2=-10が利用できそうだね。 太郎: 本当だ。α+ βを2乗するとαβ が現れるから,aβ を a+β,a2+β2 を用い てすと αβ だね。 花子: 数値を代入すると,αβ= だね。 つまり,答えの1つは |=0 だね。 太郎: 他に考え方はないかな。たとえば, α+β=4 から, 実数 p を用いて,求める 2次方程式をx-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2士, となるね。 たとえばα=2+ β=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎: 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0
数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1
数学 高校生

こちらの空白に入る答えがわかりません、、わかる方いらっしゃいましたら教えてほしいです。お願いします

問2 太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。 α+β=4, a2+B2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2 の係数が1であるとき, 2 数α,βを解とする2次方程式は x2+ x+ |=0であるから, αβ の値がわかればいいんだよね。 花子: αβ を求めるために, α2+2=-10 が利用できそうだね。 太郎:本当だ。α+ βを2乗すると αβ が現れるから,aβをa+β,a2+β2 を用い て表すと αβ= |だね。 花子:数値を代入すると,αβ= だね。 つまり,答えの1つは 0 だね。 太郎:他に考え方はないかな。たとえば, α+β=4 から, 実数を用いて,求める 2次方程式をx2-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2土 となるね。 たとえばα=2+ B=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎 : 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0
数学 高校生

数Ⅰの二次関数の問題です。 x=-1,1で場合分けする理由を教えてください。 [2]に含めてもよいと考えてしまいました。 よろしくお願いします。

重要 例題 130 2次方程式の解と数の大小 (3) 000 方程式x+ (2-a)x+4-2a=0が1<x<1の範囲に少なくとも1つの をもつような定数αの値の範囲を求めよ。 基本 指針 条件が「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに 大きく分けて次のA, B の2つの場合がある。 A-1<x<1の範囲に, 2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に, ただ1つの解をもつ A [1] 方程式の2つの解をα, B(α≦β) として, それぞれの場合につ + a いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] ® [3] -1<x の範囲に B [4] a + B x は -1<x<1 の範囲に1つ、 <-1 または 1<x の範囲に1つ + x & x-x-2=0 (x-21 (x + 1) = 0 α=-1 A B= + -1 a -1 B1x x=-1と-1<x<1 の範囲に1つ f(x)=x2+(2-α)x+4-2aとし, 2次方程式f(x)=0の 解答 判別式をDとする y=f(x) のグラフは下に凸の放物線で,その軸は直線 a-2 x= である。 2 [1] 2つの解がともに-1<x<1の範囲にあるための条 件は, y=f(x) のグラフがx軸の-1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち、次の (i)(iv) が同時に成り立つことである。 (1) D≥0 (Ⅱ) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f(1)>0 (i) D-(2-a)2-4.1.(4-2a) =d+4a-12=(a+6)(a-2) D≧0から (a+6)(a-2)≥0 a≤-6, 2≤a ゆえに a-2 (ii) x= について 2 よって -2<a-2<2 ****** ① -1<a-2 <1 1 の範囲 2-a x=- 2-1 条件は 「少なくとも1 であるから, グラフがx軸 場合,すなわ この場合も含まれ [1] 軸 D=0 ゆえに 0<a<4 2 (i) f(-1)=-α+3であるから よって a<3 3. -a+3>0 +

未解決 回答数: 1