学年

教科

質問の種類

英語 高校生

ここのaとtheの部分をどっちかえらぶもんだいがでました。どっちがどっちなのかどうやってわかるんですか?不特定か特定って書いてあったけど、そしたら逆なんですけど

しています。 bioche 10 The critical-care community is thankful for Justice Shaw's decision, S V (s) (v)- C v- (because people deserve to know (when death occurs)). 2 Death itself is is simply to a certainty, and to remove the certainty of 〈when it occurs〉 perpetuate the avoidance of its reality. 3 Critical care advances have saved many lives, but we cannot tolerate the existence of technological care [to S S S prevent us from knowing (when someone has died)]. 4 Modern medicine requires 〈that we understand its limits together〉. V s、 訳 人はいつ死が起こるのかを知る権利があるので、集中治療に携わる人々はショー 裁判官の決定に感謝している2死そのものは確実に起きることであって、それがいつ起き るかの確実性を取り除くことは、単にその現実を永久に回避することにすぎない! 3集中治 療の進歩によって多くの命が救われてきたが,私たちは,人がどの時点で死亡したのかが わからなくなるような技術を使った医療の存在を容認することはできない。 現代医療は, 私たちがその限界も併せて理解することを必要としている。 week after o rejecto contin J her b Justi and prin SOC the ou tha 永続させる/ Co n 語句 2-certainty 確実なこと / remove 取り除く / perpetuate avoidance 圏 回避 /* advance 圈 進歩 / tolerate 容認する /<prevent 人 from-ing> 人が~することを妨げる 2 文法・構文 直訳「それ[死]がいつ起きるかの確実性を取り除く」→「死の定義を曖昧に したままにする」ということです。 perpetuate avoidance of its reality は, avoid its reality perpetually 「死の現実を永遠に避ける」を名詞化した表現です。 its とは modem medicine'sの代わりになる代名詞です。 「現代医療の限界」とは,前文で述べられた「現代 医療は人の命を救うことができる一方で,どの時点を死と定義するのかが曖昧になってし まうこと」です。 ain b an their identity hand che

解決済み 回答数: 2
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1