学年

教科

質問の種類

数学 高校生

(3)の除外点の出し方が分かりません。 教えて頂けると助かります。

一 47 軌跡(V) mを実数とする. ry平面上の2直線 x+my-2m-2=0 mz-y=0… ①, について,次の問いに答えよ. (1) ①,②はm の値にかかわらず,それぞれ定点A,Bを通る A,Bの座標を求めよ. (2) ①,②は直交することを示せ . (3) ①,②の交点の軌跡を求めよ. (1) 37 で勉強しました. 「mの値にかかわらず」 とあるので について整理」して, 恒等式です。 (2) 36 で勉強しました. ② が 「y=」の形にできません. (3) ① ② の交点の座標を求めておいて, 45 の要領でやっていこうとするとか なり大変です。したがって,(1), (2)をうまく利用することになりますが、 のIIIを忘れてはいけません. 解 答 (1) の値にかかわらず mx-y=0 が成りたつとき, x=y=0 .. A(0, 0) ②より(y-2)+(x-2)=0 だから <mについて整理 B(2,2) (2) m・1+(-1)・m=0 だから, ①,②は直交する. 36 (3) (1),(2)より ①② の交点をPとすると ①1 ② より,∠APB=90° よって、円周角と中心角の関係よりPは2点A, Bを直径の両端とする円周上にある。この円の中 心は ABの中点で (1, 1) また、AB=2√2より半径√2 A よって, (x-1)^2+(y-1)^=2 ここで、①はy軸と一致することはなく, ②は直線y=2 と一致する 基礎問 y 2 0 77 ことはないので、 点 (0, 2) は含まれない. CONBOG- 84 よって, 求める軌跡は 円 (x-1)^2+(y-1)^2=2 から,点 (0, 2) を除いたもの. 注 一般に,y=mztn 型直線は,軸と平行な直線は表せません. それは,yの頭に文字がないので、リが必ず残って,r=kの形にでき ないからです。 逆に,ェの頭には文字がついているので, m=0を 代入すれば,y=n という形にでき, 軸に平行な直線を表すことが できます. 307 (0 45 の要領で ① ② の交点を求めてみると 参考 x= 2(1+m) 1+m²,y= 2m(1+m) 1+m² となり,まともにmを消去しようとすると容易ではなく、除外点を見つける こともタイヘンです. しかし、 誘導がなければ次のような解答ができます。 YA x=0のとき、①より m=y I ②に代入して 24-2=0 I I 1 D. . x² + y²-2y-2x=0 .. (x-1)^2+(y-1)^=2 次に, x=0のとき、①より, y=0 これを②に代入すると, m=-1 となり実数mが存在するので, 点 (0, 0) は適する. 以上のことより, ① ② の交点の軌跡は円 (-1)²+(y-1)^²=2 から点 (02) を除いたもの. ポイント 定点を通る2直線が直交しているとき, その交点は, ある円周上にある. その際, 除外点に注意する tを実数とする. ry平面上の2直線 1: t-y=t, m:x+ty=2t+1 について, 次の問いに答えよ. (1) t の値にかかわらず, l, m はそれぞれ, 定点A, B を通る. A, B の座標を求めよ. (2) l m の交点Pの軌跡を求めよ. 演習問題 47 第3章 (

未解決 回答数: 1
数学 高校生

わかりません

(1) 0, 2は mの値にかかわらず,それぞれ定点A, Bを通る。 (1) 37 で勉強しました.「mの値にかかわらず」とあるので,「 ここで,Oはy軸と一致することはなく, ②は直線 y=2 と一致する 76 基礎問 第3章 図形と式 十 47 軌跡(V) ことはないので、 よって,求める mを実数とする,.zy平面上の2直線 mr-y=0 …0, 円(ェ-1)+(y ェtmy-2m-2=0 ……2) 一般に,y= 注 それは,yの頭 ないからです。 代入すれば, y できます。 について,次の問いに答えよ。 A, Bの座標を求めよ。 (2) ①, ②は直交することを示せ。 (3) 0, ②の交点の軌跡を求めよ。 45 の要領 2(1 エ= 1- となり,まともに こともタイヘンで 精講 について整理」して, 恒等式です。 (2) 136 で勉強しました。 ②が「y=」の形にできません。 (3) O, 2の交点の座標を求めておいて, 45の要領でやっていこうとすると。 なり大変です。したがって, (1), (2)をうまく利用することになりますが、 の Iを忘れてはいけません. エキ0 のとき, のに代入して、 +y-2yー 解答 次に,エ=0 の これを②に代ス (1) mの値にかかわらず mx-y=0 が成りたつとき,z=y=0 点(0, 0) は適す . A(0, 0) 2 →(y-2)m+(z-2)=0 だから : B(2, 2) (2) m·1+(-1).m=0 だから, 0, のは直交する。 (3)(1), (2)より, ①, ②の交点をPとすると ①1② より,ZAPB=90° よって,円周角と中心角の関係よりPは2点A, Bを直径の両端とする円周上にある.この円の中 以上のことよ (m について整理 (0, 2) は除いた 36 ポイント は 2 演習問題 47 心は ABの中点で(1, 1) tを 0 また, AB=2/2 より,半径は、2 よって,(r-1)*+(y-1)?=2 A 22 m:エ A,

未解決 回答数: 1