学年

教科

質問の種類

英語 高校生

BとCの空いているところを教えてください。かいているところの確認もお願いします!

-mən/ (id)/ 1 Have you ever broken your favorite cup and thrown it 修復できません。 In away? Broken pottery cannot usually be repaired. Japan, however, there is a traditional technique that allows broken pottery to continue to be used. It is called kintsugi. 金継ぎ 2 Kintsugi is said to have been developed by Hon'ami Koetsu, a craftsman and artist of the Edo period. When a tea bowl cracked during firing, Koetsu fixed the pieces together with lacquer and applied gold to the join. Repaired by this kintsugi technique, the tea bowl held 10 water without leaking. 3 Kintsugi does not try to hide repair work. The gold joins stand out, adding new beauty to the repaired pottery. One of the tea bowls that Koetsu repaired by 雪峰せっぽう kintsugi is called Seppo, "Snow Ridge." Koetsu compared 15 the white glaze on the bowl to a snowy mountain and the gold joins to streams of melted snow. 4 Kintsugi combines two features of the Japanese spirit. One is mottainai, the valuing of things we use; and the other is the appreciation of beauty in everyday things. As 20 an expression of the Japanese spirit, kintsugi is attracting wider attention not only at home but also overseas. way 13. *stand out 9. join の意味は? (1) T/F (2) T/F (3) T/F 5 ほんこうえつ Koetsu 本阿弥光悦 (1558-1637) ぼう 雪峰 しょうせい 8. firing far(a)ng/ 焼成 陶器を焼くこと うるし

解決済み 回答数: 1
数学 高校生

なぜπ/6が√3/3になるのかが分かりません 赤で囲った部分のことです

D M ★★☆☆ 例題 153 2直線のなす角 2直線 3xy0 ... ① 2x+y-4=0 ② について (1) 2直線のなす角0 (0≧≦o)を求めよ。 (2) 直線 ①との角をなし、原点を通る直線の方程式を求めよ。 ReAction 2直線のなす角は, tan0 = (傾き) を利用せよ IA 例題132 思考プロセス (1) 直線 ①とx軸の正の向きのなす角を 0, 直線②とx軸の正の向きのなす角を02 001, 02 の関係は 0 tand, tan02 (2) 図をかく 条件 を満たす直線は, 右の図のように2本ある。 Action» 2直線のなす角0は, tan の加法定理を利用せよ 解 (1) ① ② がx軸の正の向きとなす角をそれぞれ 01, 02 と tanQ=3, tand2=2 すると 002-01 であるから tane = tan(02-01) tang – tan. 1+tan O2tan01 -2-3 = 1 1+(-2)・3 直線 y=mx+kがx軸 の正の向きとなす角を 0(0≦0π)とすると m=tan0 y=mx+k 2 yea 4001200 102 01 ( 01 _02 交点を通るx軸に平行な 直線を引き, 同位角を考 0 2x える。 30 π より 0 = π 4 (2) 求める直線がx軸の正の向きと y π なす角は 01 土 である。 6 6+5√3 tan (+) 3 tan (6-6)=-6+5√3 3 よって、 求める直線は,原点を通るから tan(+)- 3- tan(0,-)- 6+5√3 y = -6+5√3 3+ 3 = 1-3. www/www/www/w 3 √3 3 3 1+3・ 3 3 -x, y= X 3 原点を通るから、切片 は0である。 123 (1) 練習 1532 直線 x-2y=0 ... ①, x+3y-6=0 ② について ... (1) 2直線のなす角00≧6 0≧≦1) を求めよ。と π 2 (2)直線 ①との角をなし,原点を通る直線の方程式を求めよ。 p.310 問題

未解決 回答数: 1