学年

教科

質問の種類

数学 高校生

模試の過去問ですが解き方が全く分かりません💦 解説が無いので、どなたか教えて頂けると助かります🙇🏻‍♀️՞

太郎さんと花子さんは文化祭の模擬店で2種類の製品 X, Y を生産し, 販売 しようとしている。X,Yともに2種類の原料A,Bを使って生産することがで き,製品 X を生産するためには1kgあたり原料Aを1kg, 原料 B を 3kg 必要 とする。また,製品 Y を生産するためには1kg あたり原料 A を2kg,原料 B を 1kg 必要とする。なお, 使える原料の量には上限があり、原料 A は 10kg, 原料 B は 15kg までしか使えない。 8 製品 X を販売することで1kgあたりヵ円, 製品 Y を販売することで1kgあ たりg円の利益が得られるものとし、製品X の生産量をxkg,製品 Y の生産量 を ykg とする。そして,総利益をk円とする。 ここで,x≧0,y≧0,p>0. >0であるとし, 生産した製品はすべて販売されるものとする。 製品 X を xkg,製品 Y を ykg 生産するのに要する原料 A は合わせて 8808.0 ア kgであり, 原料 Bは合わせて イkgである。 よって,x,yが満たす条件は 115 C888.0. 0101.0 STSE.0 BTC 0 18x≥0, y≥0, ア ウ I ·(*) である。 SHOP.S 2e02.0 GOTE 0 FIZE.O a.o 8162.0 08.0 ア イ の解答群20 8181 0002 ⑩x+y ① x+2y (2) 2x+y ③x+3y 4 3x+y 5 2x+3y 6 3x+2y 08 200円 ⑦px+ay 18 ウ エ の解答群 ⑩ 1 ① 2 ③ 10 ④ 15 ② 3 ⑤ 25 (数学II,数学B,数学C第2問は次ページに続く。) 8

解決済み 回答数: 1
数学 高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答募集中 回答数: 0