学年

教科

質問の種類

数学 高校生

とあるYouTuberの方のやり方で解いたのですが、この回答だと模試または定期テストで減点されますか?もしされるのであればどこがダメなのか教えてくださいm(_ _)m

646 基本 例題 38 ベクトルの終点の存在範囲(1) 動くとき,点Pの存在範囲を求めよ。 AOAB に対し, OP =sOA+tOB とする。 実数s, tが次の条件を満たしながら 00000 (2) 3s+t≤1, s≥0, t≥0 (1)s+2t=3 そこで,「係数の和が1」 の形を導く。 + ▲ = 1 なら直線 MN 指針 OP=OM + ▲ON で表された点Pの存在範囲は ●+A=1, 0, P.640 基本 基本 例題 39 ベクトルの終点の存在範囲(2) △OAB に対し, OP = sOA+ FOB とする。 実数s, tが次の年 動くとき、点Pの存在範囲を求めよ。 (1) 1≦s+t≦2, s≧0, t≧0 (1) 基本例題 38 (2)同様, st=k OP= 00 (1)条件から1/28+1/31=10P=1/28(30)+1/2/20 (1) A(1.0)、B(0.1)とする。 → (2) 3s+t=k ...... ①とおき,まず (0≦k≦1) を固定して 3s t ①から ·=1 3s k また、OP=4200+1/2OR (226 k k k と、点Pは線分 QR上にあることがわかる。 次に,kを動か B を見る。 80 0 する A 3 s+2t=35 解答 MAC (1)s+21-3から1/3s+1/31-1 -t=1 3 satu+B-A0-10 また +A3 OP-s(30A)+(OB) (20-80) A OB (2) 1s≤2, Ost≤1 を固定し 020, S+2t=3をてについて解くと、 1/2st/2となり、図で 表すと、左のようになる。 よって、点々の存左範囲は、 30A- OA OB=OB' = の動きを見る。 そこでまず 20, B とすると、直線ABである。 A kOA ゆえに、点Pの存在範囲は, + 30A B' B 30A=0A, OB=OB' & OPD)-40 と, 直線A'B' である。 A' (2) 3s+t=kとおくと A 0≤k≤1 k=0のとき,s=t= 0 であるから, 点Pは点0に一致する。 3s t t 0<k=1のとき +1/2=1.2 20.1/20 kk, 3S k t OP=3(OA)+(KOB) 3s また (2) Q = 3 k AOA ROBOB' とすると,kが一定のとき点P = は線分A'B' 上を動く。 ここでAOC とすると, = (2)A(1.0)、B(0.1)とする。 3s+tsをもの範囲で表すと、 t-3s+1 B さらに5:00だから、Pの存在 範囲を図で表すと、左の図のようになる。 B 認可とすると OB 点Pの存左範囲は、 B' 0≦k≦1の範囲でkが変わるとき 点Pの存在範囲は △0CB の周 および内部である。 A' AQ A △OCBの同および内部 A B と

未解決 回答数: 1
数学 高校生

(1)の四角で囲ってる部分がよくわからないです。なんでこの計算になってるのかひとつずつ教えて欲しいです。お願いします🙇‍♀️

00 二項 1 の 次の等式を満たす整数x、yの組を1つ求めよ。 例題 126 1次不定方程式の整数解(1) 11x+19y=1 MART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 00000 (2) 11x+19y=5 p.463 基本事項 1,2 11と19は互いに素である。 まず, 等式 11x+19y=1のxの係数11 との係数 19 に 互除法の計算を行う。 その際, 11 <19 であるから, 11 を割る数, 19 を割られる数として 割り算の等式を作る。 =11,6=19 とおいて,別解 のように求めてもよい。 の係数との係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を5倍すると 11(5x)+19(5y)=5 よって、 (1) で求めた解を x=p, y = g とすると, x=5p, y=5g が (2)の解になる。 (1) 465 3=2・1+1 移すると 1=3-2.1 1=2- JJ 3=11-8・1 4章 15 319, 5, 次 めあうに いる 煮)。 (1) 19-11-1+8 移すると 8=19-11・1数解を 別解 (1) α=11,b=19 さ 取る 11=8・1+3 移すると 311-8.1とする。 8=3・2+2 移すると 28-3・2819-11・1=b-a 残る。 4個 よって 1-3-2-1-3-(8-3.2).1 方形 ちょ ごき すなわち 長さ 回数。 ユークリッドの互除法と1次不定方程式 11 33 =8・(-1)+3・3=8・(-1)+(11-8・1・3・ =11・3+8・(-4)=11・3+(19-11・1)・(-4) =11.7+19.(-4) 11・7+19・(-4)=1 ...... ① ゆえに、求める整数x、yの組の1つは x=7,y=-4 (2)①の両辺に5を掛けると すなわち 11•(7·5)+19•{(−4)•5}=5 よって、求める整数x、yの組の1つは 11・35+19・(-20)=5 x=35,y=-20 + =a-(b-a) 1=2a-b 2=8-3-2 =(b-a)-(2a-b)・2 + =-5a+36 (2)の整数解にはx=-3, y=2 という簡単なものも ある。このような解が最初に発見できるなら,それを 答としてもよい。 PRACTICE 126 次の等式を 13-2・1 =(2a-b)-(-5a+3b).1 =7a-4b すなわち 11・7+19・(-4)=1 よって求める整数x、yの 1つはE x=7, y=-4 慎重に 介 ート

解決済み 回答数: 1
1/1000