数学 高校生 28分前 この問題の解説の[1]で、f(0)>0となっています。 これが、f(0)≧0ではない理由を教えていただきたいです。なぜ、f(0)=0は入らないのでしょうか? 教えてください。よろしくお願いします。 展 106 放物線がx軸 放物線 y=x-8ax-8a+24 がx軸の正の部分と、異なる点で変わるように 定数αの値の範囲を定めよ。 CHART GUIDE | 放物線y=ax2+bx+c と x軸の共有点のx座標と定数んの大小に関する問 題では、グラフをかき [1] f(k) の符号 [2] D=62-4ac に注目する。 ただし, f(x) =ax2+bx+c である。 [3] 軸の位置 本間は,k=0 の場合(異なる2つの共有点のx座標がともにより大きい)で、 [1] f(0) > 0 [2] D > 0 [3] (軸の位置)>0 が条件。 解答 f(x)=x²-8ax-8a +24 とすると, 放物線 y=f(x)は下に凸で,軸は直線 x = 40 である。 方程式 f(x)=0 の判別式をDとすると, 放物線y=f(x)がx軸の正の部分と異な る2点で交わる条件は,次 [1] [2] [3] が同時に成り立つことである。 [1] f(0)>0 [2] D>0 [3] 軸が x>0 の範囲にある ■ [1] f(0)=-8a+24, f (0) > 0から8a+240 よってa<3 ...... ① (a-1)(2a+3)>0 3 a<-- 1<a [2] D=(-8a) 2-4.1.(-8a+24)=32(2a²+a-3) PIC =32(a-1)(2a+3) D> 0 から よって 2 ] [3] 4a>0 から a>0 ③ ] ① ② ③ の共通範囲を求めて 1<a<3 (ED) 3 0 1 2 注意 考え方の流れは下図の矢印のようになる。 YA [1] 軸| [3] 下に凸の放物線 y=f(x)がx軸の 正の部分と異な る2点で交わる グラフをかく 軸の 正の部 分で交 わる y軸より 右側に ある 条件を 読みとる [1] f(0) > 0 文章で表現 0 [2] D > 0 [2] 軸と x [[1] ~ [3] の [3] 軸 > 0 2点で 件から、グラ 交わるフがかける TRAINING 106 ④★ 定めよ。 201 DANA 2次方程式 x2(a-4)x+a-1=0 が次の条件を満たすように、 定数αの値の範囲を (1)異なる2つの負の解をもつ。 未解決 回答数: 1
数学 高校生 約1時間前 階差数列の一般校を求めるやつです。 Σの計算ができません。 途中式も書いていただきたいです。 A 236 次の数列{an} の一般項を求めよ。 *(1) 2, 3, 5,78,412. *(3)3,4,8,17, 33, ...... 4 24816 (2) 5, 7, 11, 19, 35, (4)1, 6, 15, 28, 45, 591317 初項から第n項までの和 S, が次の式で表される州に 未解決 回答数: 2
数学 高校生 約2時間前 有利化するときにかける式が3ールート3➕ルート6になる理由を教えてください (3) 与式 = 77 (3) = = 3-(√3+√6) V (3+√3+√63-(√√3+√6)} 3-√3-√6 32-(√3+√6)² 3-√3-√6 -3+√√√3+√6 = 9-(9+62) VS-6√√28 (-3+√√3+√√6)√2 6(√2)2 V [+ -3√√2+√√6+2√3 T-12 S 1 3+ √√3+√√6 D 解決済み 回答数: 1
数学 高校生 約2時間前 この問題の全ての答えを教えてもらえませんか? 解き方はわかると思います! よろしくお願いします 程式を解け。 ① 4x2-7x-15=0 (4x+5)(x-3) 3.5 ②x2-5√3x+18= 0 5 175-72 18 ×4 564 2 (2) 2次方程式x2-3x+k = 0 が重解をもつとき, 定数 kの値と,その 重解を求めよ。 9-4k=0 -4k=-9 (c = 4 (x-2) (3) 2次関数y=-x+5x-3のグラフがx軸から切り取る線分の長さ を求めよ。 -(-x+3)-5±√25-12-50 - 2 (4) 2次関数y=2x2+4x+kのグラフがx軸と共有点をもつような定 数kの値の範囲を求めよ。 回答募集中 回答数: 0
化学 高校生 約2時間前 問2がわからないです。炭酸バリウムが全く分解されないのでしょうか?2.4kPaになるまで電離が起きるのかと思いました。 教えて頂きたいです。よろしくお願いいたします。 T1-3 不均一 次の文を読み, 以下の問1~3に答えよ。 ただし, 気体定数R = 8.3kPa・L/(K・mol) とし 答の数値はすべて有効数字2桁で記せ。 炭酸カルシウム(CaCO3) は石灰石や大理石の主成分として天然に存在する。 炭酸カルシウムを高温に加熱すると二酸化炭素と酸化カルシウム(CaO) に分解するが,真空 密閉容器中で 890℃以上の高温では, 二酸化炭素の圧力がある値に達すると次式のような平 衡状態となる。このときの温度と二酸化炭素の圧力の関係は表1のようになる。 CaCO3 (固) CaO (固) + CO2(気) 表1 炭酸カルシウムの平衡状態における温度と二酸化炭素の圧力の関係 1100 温度[℃] 900 圧力 〔kPa〕 1.0×102 1.2×10° BaCO (固) また,カルシウムと同じ2族に属するバリウムの炭酸塩 (BaCO3) においても真空密閉容器中 で1100℃ では次式の平衡状態となり,このとき、二酸化炭素の圧力は 2.4kPa である。 べて気体と BaO (固) + CO2(気) 気体は理想気体としてふるまうものと仮定する。 また, 容器内の固体の体積は無視できるも のとし、 使用する容器は耐圧・耐熱であり, 容器の体積の変化はないものとする。 問1 パーセントで 炭酸カルシウム 0.20mol を 10Lの容器に入れて25℃で真空密閉状態とした後, 容器 を900℃に保った。 このとき, 容器内の圧力は何kPa になるか。 か。 問2 炭酸カルシウム 0.20mol と炭酸バリウム 0.20molを10Lの容器に入れて25℃で真 空密閉状態とした後, 容器を1100℃に保った。 このとき, 容器内の圧力は何kPa になる 問3 炭酸カルシウ ゴム 未解決 回答数: 1
数学 高校生 約6時間前 このような帰納法の問題で赤線部のところを「〜を示す」ではなく「〜と仮定する」とおいて最後に「1、2より成り立つ」と書いたのですがそれではバツされてしまいますかね…?テストで全部そのように書いてしまって😢どなたか教えて欲しいです 62以上の自然数nについて, 1+- 22 1+2+3 + + 12-1 n n が成り立つことを数学的帰納法で示せ。 解決済み 回答数: 2
化学 高校生 約7時間前 高2化学の溶液の問題です。 教えてもらいたいのは2つで、 ・一番上の問題の答えは63.4gなのですが、自分は56.25gとなっていました。自分の考え方の間違っているところ、または正しい解き方 ・下の3つの問題が合っているかどうか、また間違っているところの正答(できれば) で... 続きを読む (1) 組番名前 硫酸銅五水和物~溶液範囲の難所〜 90℃の硫酸銅(Ⅱ) 飽和水溶液 156g を20℃に冷やすと、何gの硫酸銅(Ⅱ) 五水和物が析出するか? (CuSO の溶解度は90℃→56g、20℃→20g CuSO=160 CuSO5H2O=250) 90°C 溶媒 溶質 溶液 100g 563 1563 20°C 溶媒 質 溶液 coo) 201 120g 363 CuSO4*5 36=X=160:250 160250-34 3-56.25 63.42€ 問20℃および 60℃における硫酸銅(Ⅱ) 無水塩 CuSOの溶解度を、それぞれ20 40 として、次の各問いに答えよ。 (1)60℃で水 100g に硫酸銅(Ⅱ) 五水和物 CuSO 5H2O を 30g 溶解させた。この溶液の質量パーセント濃度は 何%か。 150 30-259 =19.2g 19.2 130 100=14.77% 114.77% 2309 1301370 265 429 390 1090 625 10110000 960 402 329 80 (2)60℃で CuSO, 飽和水溶液 100g を作るには、 CuSO5H2O は何g 必要か。 4to 60°C 溶媒 |溶質 溶液 C-504-403 160:250=40: 162.5=62.5= 100:X 6250=162,5 -38.46 250-40=160 X=625 38,460 (3)60℃の CuSO 飽和水溶液100g を20℃まで冷却すると、 CuSO,・ 5H2Oの結晶が何g 析出するか。 20°C 溶媒 溶質 溶液 20:40=m 38.46 4083969.2 19,23 19.239 回答募集中 回答数: 0
数学 高校生 約7時間前 写真にあるような、立体の塗り分けの問題についてで、自分なりに手書きの紙のように定石化してみたのですが、これでよいか見ていただきたいです! 173. nを自然数とする。n色の異なる色を用意し,そのうちの何色かを使って正多面体の面 を塗り分ける方法を考える。 つまり、1つの面には1色を塗り, 辺をはさんで隣り合う 面どうしは異なる色となるように塗る。 ただし, 正多面体を回転させて一致する塗り分 け方どうしは区別しない。 (1)正四面体の面を用意した色で塗り分ける。 少なくとも何色必要か。 n≧4 とする。この方法は何通りあるか。 (2)正六面体 (立方体) の面を用意した色で塗り分ける。 少なくとも何色必要 6 とする。この方法は何通りあるか。 [21 滋賀医大] 解決済み 回答数: 1
英語 高校生 約8時間前 以前画像3枚目の様に修飾限定予告のthatというものを習ったので今回もその形なのかと思い、それらのと入れずに訳してしまったのですがこのthoseの識別は文脈判断ということでしょうか? 教えて頂きたいです。よろしくお願いいたします。 実理 K The starting point for today's *meritocracy, of course, is the idea that intelligence exists and can be measured, like weight or strength or fluency in French. The most obvious difference between intelligence and these other traits is that all the others are presumably changeable. If someone weighs too much, he can go on a その人 →Heyで受けるのが一般的 5 diet; if he's weak, he can lift weights; if he wants to learn French, he can take a course. But in principle he can't change his intelligence. There is another important difference 原則として MV between intelligence and other traits. Height and weight and speed and strength and サフィス体例 関係性が強い文がくる even conversational fluency are real things; there's no doubt about what's being 間違いなん measured. Intelligence is a much murkier concept. Some people are generally (2) m2 Vogue 10 smarter than others, and some are obviously talented in specific ways; they're chess 天才 S masters, math *prodigies. But can the factors that make one person seem quicker than another be measured precisely, like height and weight? Can we confidently say that one person is 10 percent smarter than another, in the same way we can say he's 10 へんて、いつだっ S percent faster in the hundred-yard dash? And can we be confident that two thirds of 櫂へん 言いかえ 15 all people have IQs within one standard deviation of the norm that is, between 90 ように and 110 - - as we can be sure that two thirds of all people have heights within one standard deviation of the norm for height? Yes, they can, and yes, we can. besure least, are the answers that the IQ part of the meritocracy rests on. Those, at (3)- 未解決 回答数: 1
化学 高校生 約10時間前 2番の問題が分からないです。 教えてください🙏🏻 つく 基本例題 45 炭化水素の燃焼 あるアルカンについて,次の各問いに答えよ。 問題446-447 エ (1) アルカン1分子中の炭素原子の数をnとして,その分子式を示せ。 機化合物 素を混合 ウ)に 原子間 よっ 臭素 が発生 (2) アルカンの完全燃焼を,(1)の分子式を用いて化学反応式で表せ。 (3) あるアルカン1mol を完全燃焼させるのに、酸素が5mol必要であった。このア ルカンの分子式と名称を記せ。 考え方 (2) 1molのアルカン CH2n+2 を完全燃焼させると, CO2がn mol 発生し, H2O が 2n+2 2 mol=n+1mol 生じる。 両辺の酸素原子の数が等しくな るように, 化学反応式を完成さ せる。 (3)(2)の物質量の条件にあては まるnの整数値を求める。 ■ 解答 (1) アルカンは飽和炭化水素であり,分子式は CH2n+2 と表される。 (2) アルカン CH2n+2の完全燃焼は,次のように表される。 CnH2n+2+ 3n+1 2 0₂ ← nCO2+(n+1) H2O (3) アルカン1mol を完全燃焼させるときに必要な酸素 5mol なので (2) の化学反応式から,次式が成り立つ。 3n+1 -=5 n=3 2 したがって, 分子式は C3Hg となり,このアルカンの名 称はプロパンとなる。 261 未解決 回答数: 1