学年

教科

質問の種類

数学 高校生

⑶において なぜm→+0のときt→+0となるのですか

EX 342 のすべてにそれぞれ1点で接する円の半径をbとする。 ただし, baとする。 xy 平面の第1象限内において, 直線l: y=mx(m>0) とx軸の両方に接している半径αの をCとし,円Cの中心を通る直線y=tx(t>0) を考える。 また, 直線lとx軸,および, (1) tをm を用いて表せ。 (2)を用いて表せ。 (3) 極限値 lim 1 b a m+om -1 を求めよ。 [東北大 ] YA ←直線 y=tx は,直 (1) 直線 y=tx と x 軸の正の向きが なす角を0とすると, 直線lとx軸 の正の向きがなす角は20である。 軸の正の向きとの なす角の二等分線である a → x 0 a y=tx 2 tan よって m=tan20= 1-tan 20 10-00- 2t ゆえに m=. ① 1-12 よって mt2+2t-m=0 -1±√1+m² ゆえに t= m -1+√1+m² t0, m>0であるから t= m ←2倍角の公式。 =00 ←tan0=t 500g ←tの2次方程式とみて 解の公式を利用。 (2) 半径が6である円をDとする。 Dの中心からx軸に下ろし (1) の図の黒く塗った直 た垂線にCの中心から垂線を下ろすと, sin0 について 角三角形 b-a a+b √2+1 b 1 t b-a = すなわち = a+b √t²+1 b 8209-1+ a b a -=Aとおくと A-1_ t 1+A 分母を払い, 変形すると √2+1-t>0であるから √2+1 (√2+1-t)A=√t2+1+t √ t²+1+t _ (√ t²+1+t)² = √√1²+1-t (√1²+1)²-12 A= したがって tan0=tから得られる直 角三角形 +2+1 =(√1²+1++)² ←分母の有理化。 1/2=(√+1 +t) ② a ...... (3) ①,② および,m→ +0 のとき t→ +0 であることから 1/6 iimo (22-1)=im 1-12 (21°+21F+1) m→+0m a t+0 2t =lim(1-t)(t+√t°+1)=1 t→+0 ←(√2+I+t) =2t2+1+2t√2+1, 2t で約分。

未解決 回答数: 1
数学 高校生

2枚目の四角の部分はどうやって数字を求められましたか?

B2 三角関数(20点) OはTOMを満たすとする。xについての2次方程式 2x2-2 (sin0+cos0)x+sin200 ...... ① を考える。 (1)のとき、 2次方程式 ① を解け。 (2) 2次方程式①の解について, 太郎さんと花子さんが話している。 太郎: 2次方程式 ① の解はどうなるのかな? 花子: 2倍角の公式より, sin20= だから、①の左辺を因数分解して解を求め ることができるね。①の2つの解をα,β(a<B) とすると,0ぇだから (+) ( a = (イ) B = (ウ) となるね。 太郎が変化するとき、2つの解の差 B-αの値はどうなるのかな。 完答へ 道のり (2) (i) 2 花子: t=β-α とおくと, t= (エ) sin (0- sin(0- (オ) と変形できるね。 (ii) この式を用いると、のとき,tのとり得る値の範囲は (カ) とわか るよ。 (i) (ア) ~ (ウ) に当てはまるものを、次の1~7のうちから一つずつ選び、番号 で答えよ。 ただし、 同じものを繰り返し選んでもよい。 1 sin 22sin0 3 cos 4 2 cos 0 5 sincos0 62sincose 7 cos-sin 20 (ii) (エ) に当てはまる数を答えよ。 また, (オ) に当てはまるものを、次の1~7 ( のうちから一つ選び、 番号で答えよ。 π 1 2 π 3 TC 4 π 2 6 3 6 4TT 7 ST 6' (カ) に当てはまるもの値の範囲を答えよ。 ただし、解答欄には答えのみ記入せよ。 配点 (1) 6点 (2)3点(イ) 1点 (ウ) 1点 (エ)(オ) 3点 (完解) (カ) 6点 解答 (1) 2x2-2 (sin+cos 0)x+ sin 20 = 0 =1のとき、①は 2x2-5 2-2(sin+cos)x+ sin x = 0 42- sino=1. cos=0, sin 完 道の

未解決 回答数: 1
1/37