学年

教科

質問の種類

物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
物理 高校生

【高校物理】電源のした仕事を考える時、Q2を考えないのは何故でしょうか?教えてくださいm(_ _)m

問5-6 右ページの図のような回路がある。 はじめ, どのコンデンサーにも電荷が蓄えら れていない。このとき、 次の問いに答えよ。 (1) スイッチをaにつないでから十分に時間が経過した。 この間に回路で発生し たジュール熱はいくらか。 (2) その後、スイッチをbにつなぎ替えて十分に時間が経過した。この間に回路 で発生したジュール熱はいくらか。 電源のした仕事=静電エネルギーの変化+発生したジュール熱 の関係を使って計算していきましょう。 解きかた (1)はじめ、どのコンデンサーにも電荷が蓄えられていないので静電エネル ギーは0ですね。コンデンサー C, とコンデンサー C2の電圧を V1, V2と すると 電圧1周0ルールより E = V1 + V2 …① 蓄えられる電気量は Q1 = CV1 Q2=2CV2 ③ 独立部分の電気量の総和は不変なので、②③ より 0+0= - CV + 2CV2 0=-V1 +2V2 ...... ④ ①+④ より E=3V2 ゆえに Vi = 1/2/3 EP2= 2 12=1/3 静電エネルギーはそれぞれ -E U₁ = CV² = 2 CE² 1 U2=2CV2²=CE 1 仕事をしています 9 電源はQ=CV の電気量をEだけ持ち上げたので、電源のした仕事は Q.E=C1/23E・E=1/23CE2 よって、回路で発生したジュール熱をJとすると 3 9 CE²= CE² + CE²+ 1 9 ゆえに J= J₁ = CE² ... 答 Q2は?

解決済み 回答数: 1
物理 高校生

物理のエッセンスの力学の問題について質問です。 (2)の運動量保存の式ではmv+MV=mv0とされていますが、衝突後のMの速度は最終的に0になると言う認識でいいのでしょうか?? また、もしそうならば滑らかな床であるのにも関わらず速度を持った物体が静止する理由を教えて頂きたい... 続きを読む

①+M×② (m+M)v'= (m-M) ひ1+2Mv2 V₁ = (m-M)v₁+2Mv2 m+M ①mx② 11/12M2=1/2x2 力学 17 M . x=V √ k 3mvo M 2(m+M)V k ちなみに v= 2m-M 2(m+M) v < 0 となる (M+m)v2′'=2mv+(M-m)vz V₂ = 2mv,+(M-m)v₂ m+M 問題の図では, はじめのP,Qの速度 が右向きに描かれているが, どんなケー スであれ,この結果は通用する。 M=mのときは,U1'02,02′'=v とな って、速度の入れ替わりが起こる。 ただ, 「等質量」で「弾性衝突」 という二重の条 件が必要であることを忘れないように。 78 (1)e=0 は完全非弾性衝突ともよ ばれ, 衝突後の速度差が0, つまり一体 化する(ひっつく) ケースである。 衝突直 後の両者の速度をとすると mv=m+M)より v= m m+M -Vo このときの運動エネルギーがばねの弾性 エネルギーに変わっていくから (m+M) v² = 1½ ½ kx² m+M mvo .. x=0 からは左へはね返っている。 79 M v m V +0000000 れきぜん 速さをv, Vとする。 (速度にしない のは向きが歴然としているため) 運動量保存則は mv=MV ... ① 力学的エネルギー保存則は ......② 11/21k=1/2m+1/2 MV22 ①のVを②へ代入し m2v2 |\ {kl²=\/\mv²+ 2M =1/2m0(1+77) M kM v=l m(m+M) k √k(m+M) 衝突の直前・直後を力学的エネルギー 保存で結ぶことはできないが, 衝突後は みきわ 成り立つという見極めが大切。 (2) 衝突後のm, Mの速度を v, Vとす る。 mv+MV=mvo v-V=-(0-0) ①mx② より 3m この場合,「物体系はどれとどれ?」 と尋ねると,「P と Q」 という答えが圧倒 的だ。 それでは, ばねの力が外力として 働いてしまう。 それでも, ばねの力はP Q に対して, 逆向きで同じ大きさな ので,外力の和が0ということでセーフ なのだが, 「P と Q とばね」 を物体系と とらえるとよい。 ばねの力は内力 (グル ープを構成するメンバー間の力)となっ て気にならないし, ばねには質量がない ので,運動量は常に0 で, 保存則の式に 顔を出してこない。 80 V=- 2(m+M) -Vo 今度は板だけがばねを縮めていくので 最も高い位置にきたかどうかは,台 上の人に判断させればよい。 その人が見 てPの速度が0になったときにあたる。

解決済み 回答数: 1
物理 高校生

(2) 力学的エネルギーの変化量を考えるとき、動摩擦力による仕事は考えなくていいんですか?

第1章力学 問題 18 仕事と力学的エネルギー ② ばね定数k (N/m) の軽いばねの一端に,質 量m(kg) のおもりAをつけたばね振り子が ある。このばね振り子をあらく水平な床面上 物理基礎 公式 A U = 11/√ kx² 100000000 năm Q 0 -31 P IC 5/ 置き ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のように, Aを原点Oから点P(x=5/〔m))まで引っ張って、静か にはなした。Aは左向きに運動し始め、点を通過した。 その後、x=-31 (m) の点Qで静止した。 床面とAとの間の動摩擦係数をμとし、重力加速度 の大きさをg(m/s) とする。 (I)Aが点PからQまで運動する間に、動摩擦力のする仕事 W (N・m) を求 めよ。 Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E (J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 弾性力による位置エネルギー(弾性エネルギー) U (J) (k (N/m): ばね定数 〔m〕: 伸び縮み) (I) おもりAにはたらく動摩擦力の大きさはμmg 〔N〕でPからQまでの移動 距離は8/〔m〕 である。 よって, 求める仕事 W [N·m〕 は, W=-μmg818μmgl (N・m〕 (2) 求めるのは「力学的エネルギーの変化量」なので、 おもりAの運動エネル ギーと位置エネルギーの和の変化量を考える。 Aは水平方向に運動しているので, 高さが変化しておらず重力による位置 エネルギーは考えなくてよい。 また, 点P, 点Qは自然長(原点O)からずれ た位置なので,点P, 点Qにおいて, Aは弾性力による位置エネルギーをもつ。 点P,Qにおける, 弾性力による位置エネルギー Up, UQ[J] は, それぞれ, 〈千葉工業大 〉 Up = =1/21k(50)2-252k2 =/( 9 U₁ = ½k (31)²=kl² 2 (解説) ばねが自然長から伸びたり縮んだりしているとき, ばねの両端 には自然長に戻ろうとする向きに力が生じる。 この力を弾性力 点Pでは 「静かにはなし」 点Qでは 「静止した」 ので, それぞれの点で速 さは0.すなわち, 運動エネルギーKP, Ko〔J〕 も0になる。 よって という。 4E = 0 + 25 0+ -kl² 2 == 8kl² (J] 変化後KQ+ UQ 変化前 K + Up 公式 弾性力の大きさF(N) F=kx (k(N/m〕: ばね定数 〔m〕: 伸び縮み) (3) ⊿E = Wより ※ 弾性力の向きは, 自然長に戻ろうとする向き。 - 8kl² == -8umgl よって, μ = kl mg F ⇒縮みx, 弾性力F,=kx, 弾性エネルギー U22kx2 自然長⇒弾性力0, 弾性エネルギー 0 X1 X2 mmmm 000000 F2 ⇒ 伸びzy→弾性力Fy=kx, 弾性エネルギー U2=1/2k2 自然長 注 ここで, p.39 公式 力学的エネルギーと仕事の関係と p.37 公式 運動エネル ギーと仕事の関係の違いを、しっかりとおさえておこう。 保存力である重力 弾性力について, 位置エネルギーを考えるのが 「力学的エ ネルギーと仕事の関係」 であり, 仕事を考えるのが 「運動エネルギーと仕事の関 「係」である。 1つの式の中で、重力 弾性力の位置エネルギーと仕事を同時に考え こることはない! た, ばねは伸びたり縮んだりしているとき, 弾性エネルギーを蓄えている。 エネルギーは弾性力による位置エネルギーともいう。 kl (1) W = -8μmgl〔N・m〕 (2)4E = - 8kl[J] (3)μ= mg 4. 仕事とエネルギー 41

解決済み 回答数: 1
物理 高校生

答えと解き方を教えてください🙇

STEP 1 公式チェック □U1-1 【等速直線運動】 軸上を一定の速度 [m/s] で動く物体が、 時刻 0s に位置x=2〔m) を通過した。この物体の時刻 [s] での位置ェ 〔m〕は? I= 学習時間 do-vt □U1-2 【等速直線運動のグラフ] r〔m〕 tグラフの傾きは 【 1 】 を表す。 また, b-tグラフで囲まれた面積は 【②】 を表す。 傾きは v[m/s] 面積は Do ① Io =rotot 速度 0 0 t(s) t(s) ② 動 □U1-3 【等加速度直線運動】 時刻 0sに原点Oを初速度vo [m/s] で出発して, 一定の加速度α [m/s] でx軸上を運動する物体がある。 物体の時刻 t [s] での速度 v= x= [m/s] は? 物体の時刻t [s] での位置〔m〕は? これら2式からt を消去した式は? □U1-4 【等加速度直線運動のグラフ】 za's x-tグラフの傾きはその瞬間の 【③】 を表す。 x=vot+ at x [m] b-tグラフの傾きは 【④】 を表 し, v-tグラフで囲まれた面積は 【⑤】 を表す。 v[m/s] v=vo+at 傾きは は 2 v²-vo²= ③ ④ 加速度 分 傾きは Vo O t[s]) t t[s] ⑤ 移動距離 □U1-5 【相対速度】 直線上を速度vAで運動する物体Aと速度UB で運動する物体Bがあ る。 Aから見たBの速度 (相対速度) VAB は? VAB = □U1-6 【自由落下】 初速度0m/sで落下する (自由落下する) 小球がある。重力 O+ 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を原 49 点として鉛直下向きにy軸をとる。 自由落下を始めてかYO ら時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕 は? v= ¥0 y= y〔m〕 □U1-7 【鉛直投げ上げ】 小球を鉛直上向きに初速度vo [m/s] で投げ上げた。 重力 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を 原点として鉛直上向きにy軸をとる。 投げ上げてから 時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕は? これら2式からtを消去した式は? y〔m〕 yo 0= AVO y= O+ 147

解決済み 回答数: 1
1/6