学年

教科

質問の種類

物理 高校生

【物理記述の仕方】 新しく自分で文字を置くときに二枚目の写真のように細かく説明しなくても三枚目の写真のように図に記入すれば大丈夫ですよね?体積や圧力をV,Pを使って置いてるのでイレギュラーな文字の置き方しない限りは説明入りませんよね?💦

図のように両端を密閉したシリンダーが, なめら 19 かに動くピストンで2つの部分A, B に分けられて おり,それぞれに単原子分子理想気体が1 [mol] ず つ入れられている。 シリンダーの右端は熱を通しやすい材 A B 料で作られているが, それ以外はシリンダーもピストンも断熱材で作られている。は じめの状態では, A, B 内の気体の体積は等しく, 温度はともに To [K] であった。次 に, 右端からB内の気体をゆっくりと熱したところ, ピストンは左向きに移動し, 最終 的にA内の気体の体積はもとの半分になり, 温度は T1 [K] になった。 気体定数を R[J/(mol・K)] として,以下の問いに答えよ。 (1)この変化の過程で,A内の気体が受けた仕事は何〔J〕 か。 (2) 変化後のA内の気体の圧力は最初の状態の何倍になったか。 (3) 変化後のB内の気体の温度は何〔K] になったか。 (4) この変化の過程で, B内の気体が外部から吸収した熱量は何 [J] か。 ( 京都府大)

回答募集中 回答数: 0
物理 高校生

問6から問8が本当に分かりません。分かる方いたら解説どうかよろしくお願いします。

II 図3のように,水平な地面に建てられた高い塔がある。この塔の地面からの高さんの 位置には,小物体を水平方向に打ち出すことができる装置Sが設置されている。また, 地面上でSの射出口の真下の点から地面に沿って距離 Dだけ離れた位置に,小さい標 的Zがある。 Sから小物体Pをある速さで水平に打ち出したところ, Pは途中で地面に 落下することなく, 打ち出してから時間to後にZに到達した。 重力加速度の大きさをg 次に, SからPをある速さで水平に打ち出すと、Pは点Oから地面に沿ってだけ 離れた位置に落下した。 そこで、図4のように、再びSからPを同じ速さで水平に打ち 出し,打ち出してから時間 - to後にPの速度の水平成分のみを瞬時に変化させたところ, Pは途中で地面に落下することなくZに到達した。 2 とし、空気抵抗は無視できるものとする。 SP Va h 塔 O D Z 地面 内面 図 3 (m0m 0.0) 120=1 問5 to はいくらか。 h, g を用いて答えよ。 (0) 08.05 A[m] - 54 - > B 間 ( SP h 塔 0 45 D D 図 4 Z 地面 問6 Zに到達する直前のPの速度の鉛直成分の大きさはいくらか。 h, g を用いて答え よ。 問7 Sで打ち出してから時間 1/2t後に速度を変化させた直後のPの速度の水平成分の 大きさは,Sで打ち出したときのPの初速度の大きさの何倍か。 問8Zに到達する直前のPの速度の向きが,水平方向から45° 下向きとなる場合を考え る。この場合,Dはいくらか。 んを用いて答えよ。 - 55 -

未解決 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

解き方は合ってると思うんですけど、なぜか答えの方はmgtan45 になってます。なにが違うのか教えて欲しいです。左の自分で作った回答です。先生に教えてもらってこのやり方にしてました

Tsin neg TE Bing TE 物理 例題 67 クーロンの法則 長さL[m]の軽い絹糸の一端に質量m[kg〕の小球をつけ たものを2個、右図のように点からつるし、小球に等量 の正電荷を与えたところ,両者は反発し合い、2本の絹糸 のなす角が90°となった。 重力加速度の大きさをg〔m/s²]. クーロンの法則の比例定数をky.m²/C2〕として与えた 正電荷q [G] を L.m, g, を用いて表せ。 センサー 97 点電荷の場合, クーロンの 法則が成り立つ。 19₁ 192 F=k は使えないので注意。 F4 Tios450 (05659 F=m 点電荷とみなせるとき以外 ●センサー 98 界の抽象的な問題では, halo 正電荷や負電荷があると仮 =mg Han 4009 SMYS定する。 ●センサー 99 4様な電界中では, V=Ed が成り立つ。 解答| 電気力の大きさをF〔N〕, 糸の張力の大きさを すると、小球は,F, T. 重力 mgの3力でつり合う。 小球間の距離は2L〔m〕 だから, クーロンの法則より、 6.F=ko ●センサー100 クーロンの法則はクーロンが1785年に発見す (v2L) 右図より。 tan 45° mg tan 45°ko ゆえに,q=L q² (2L)2 -(C) 2mg Ro F mg 物理 問題 68 電界と電位と仕事 Tsingo=mg| 次の問いに答えよ。 V TOSPF (1) 電界の強さが2.0×105円/m の一様な電界中で,電界に沿って 0.40m だけ .com to だから, F V=2.0×10×0.40 = 8.0×10³ [V] 45° 【解答 (1) 右図のように, 電気力 線の始点に正電荷,終点に負電 荷があると考えるとわかりやす い。 求める電位差をV[V] とす ると, V=Edより T. れた2点A,B間の電位差を求めよ。 (2) 点Aより150 V だは電位が低い点Cへ, -2.0Cの点電荷をゆっくりと連 とき 外力のする仕事を求めよ。 mg 45° v2L 314 315 317 32 AL 0.40m 2.0×10'V/m 177 dは電界に沿った距離。 圃 一様な電界は,十分に大きな平行極板間などに生じる。 (2) W=q4V=g(Vc-V)より、点Cのほうの電位が低いか W=(-2.0) × (-150) - 物理 0

未解決 回答数: 1
物理 高校生

この2番の問題なぜ、eがマイナスになるんですか?ほかの問題でプラスになったりマイナスになったりしてわけがわかりません

(3) Step 1 解答編 p.246~247 陰極線 次の文の[ □に適当な語句を入れよ。 電極を封入したガラス管に低圧の気体を入れ,高電圧をかけて放電させる。 ③には,(1)物体によっ ②極の反対側のガラス管壁が蛍光を発する。 これは② コや磁界によって 体の圧力が数 kPa 程度であると、管内の気体が ① する。一方,10Pa以下の圧 力の放電管では, から出る ③がガラスに当たって生じるものである。 ④性) (2) ⑤ 電荷を運ぶ (3) ⑥ て遮られ、影ができる 曲げられる, などの性質がある。 トムソンは3③⑦を測定した。後に ③の正体は⑧の流れであることがわかった。 ② 電子に生じる加速度 右図のように間隔dの平行極板間に電 圧をかける。質量m/電気量-d(≪0)の電子を極板に平行 に入射したときの電子の加速度の大きさと向きを求めよ。 43 d D 3 電子の比電荷と加速度間隔が0.10m だけ離れた平行極板に, 2.0×10Vの電 e €₁ m をかけた。この極板間に置かれた電子 (比電荷 度の大きさは何m/s2 か。 + + + m, -e ? ミリカンの実験空気中に, 2枚の平行板電極を、上下に間隔dだけ離して水平に 置き,電圧Ⅴをかけた。この極板間に質量の電気量帯電した油滴を入れる と,油滴は一定の速させて上昇した。このときの力のつり合いの式を書け。ただし、 油滴が受ける空気の力は油滴の速さに比例し(比例定数k) 重力加速度の大き さをgとする。 64 V 3 3.5×10¹ m/s² ④ mg+kv-q d ⑥ 粒子性 (1), (4) 波動性 (2)(3) 268 第V部 原子分子の世界 D-0 ⑤ 光量子波長が 6.0×10mの光子1個のエネルギーと運動量の甘さを求めよ。 ただし, プランク定数を 6.6 × 10734 J's, 光速を3.0×10°m/s とする。 11,26 1/76×10 [C/kg]) に生じる無 Q ⑥ 粒子性と波動性 (1)光電効果 (2) ラウエ斑点 (3) ブラッグの条件 (4) コンプトン効 果は,光やX線の粒子性と波動性のどちらに関係が深いか。 8,16,23,24,25.26 答 ①①発光 ②陰 ③陰極線 ④直進 ⑤ 負 ⑥電界 ⑦比電荷 ⑧電子 ② eV md' =0 ⑦ 物質波速さ 3.0×10°m/sで運動している電子の物質波の波長は何mか。 ただい 電子の質量を9.1×10 -31 kg, プランク定数を6.6 x 10 J's とする。 Na 34 274 u 2.4×10-10m 3.3×10-19 J, 1.1×10-27kg・m/s 例題 93 右図の光 変えて実験 電効果が走 数をn (1) 金属木 (2) 波長 ギーの (3) 波長 UT 上向き 陰極線の粒- 光 eを用 SP 問 (1) 入 〔 が起こ の光子 に相当 (3) 「電 れなく のほ 電子 ネル り、 動エ が小 流は ( 光の粒 E=h_ 光電効 の運動 Ko, 光 仕事関 Ko=

回答募集中 回答数: 0
1/15