学年

教科

質問の種類

物理 高校生

これあっているか確かめて欲しいです。ごちゃごちゃしててすいません🙇 もし間違っていたら教えて欲しいです。

物理 (b) 図3-3のように,z軸上に十分に長い導線があり、導線には大きさがIの電 流がz軸の正の向きに流れている。 また, xz 平面内に1辺の長さがαの正方形 の1巻きのコイルが固定して置かれており、正方形の辺ABは軸と距離αだけ はなれている。導線とコイルは空気中にあり、空気の透磁率をμ, 円周率をと する。このとき,z軸上の導線の電流が, 正方形の頂点Aの位置につくる磁場 7 の (磁界)の磁束密度の大きさは 6 であり、磁束密度の向きは 向きである。 fut 2Ra Z軸の負 Vb I 次に,コイルに大きさがiの電流を図3-3のA→B→C→D→Aの向き に流すと, コイルはz軸上の導線の電流がつくる磁場から力を受けた。 コイルの 辺ABが軸上の電流がつくる磁場から受ける力の大きさは 8であり, 力の向きは の向きである。また, コイル全体が軸上の電流がつくる 磁場から受ける力の大きさは 10 であり,力の向きは 11 の向きで ある。 x軸 1 Co H= H: 270 27.22 47 ※軸の負 1 2 より I 5/19 Bi→>> sec b Vis C + o 4th F Owth S y B = M F & B = MI a より 1 47a A a F. Iblay F. 472 4 D F Fr Wa 図魚 F2 F: MiI Miz 27 47 4 9 ANI (1-31/10 ) 2 2aI 20 29 20 20

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

aの式はこのようになるみたいなのですが理由を教えてください。 他の問題は式も分からないので教えてください🙇🏻‍♀️՞

図のように、水平な地面上の地点からMの小物を直に打ち上げ、同時 地点からの小Bを打ち上げる。小の打ち上げ角度とPQ間の 変化させることができる。 小物の打ち上げの初速度の大きさを小 の初速度の大きさとする。また、力度の大きさとし、空気による抵抗は 無視する。 AM ・地面 AがBと衝突しない場合、 A は打ち上げから着地までどれほど時間がかかるか。 正しいものを、次の①~⑥のうちから1つ選べ。 0 2g 1807 19 (b) BAに衝突させるには、角度をいくらにしなければならないか。zineとして 正しいものを、次の①~⑥のうちから1つ選べ。 V 1 mV Mo a MV MV Me (c) Aが最高点に達したときに衝突が起こるようにしたい。そのためにはいくらに しなければならないか。 正しいものを、次の0~9のうちから1つ選べ Vo gcolo Vecose (d) AとBが最も高い位置で衝突し者は合体した。 平成分と 直成分の大きさはそれぞれいくらか。 正しいものを、次の一のうちから1つず つ選べ。 水平成分 4 鉛直成分 5 @ 0 ② ③ M+m 2me M+m MUCOS M+m M+m (c) AとBは合体した後、地面に落下した。 P地点から落下地点までの距離はいくら か。 正しいものを、次の①~④のうちから1つ選べ。[6] ml mlsina micosa mitana M+ M+m M+m M+m

回答募集中 回答数: 0
1/21