学年

教科

質問の種類

物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

この問題の(1)で、圧力の釣り合いが理解できません😭力の矢印を書いた図を用いて教えて下さると嬉しいです🙇‍♀️

図のような,滑らかに動くピストンのついた断面積Sの容器 がある.容器はピストンを含め断熱壁でできている.容器の底 から,高さαのところに止め具Aがあり,ピストンがこれ以下 に下がらないようになっている.容器内に大気圧と等しい圧力 po, 絶対温度 To の単原子分子の理想気体が入れてある (この状 態を0とする). po 水 Po, To www C |B Ab 玉泉 止め具 Aから高さんの所にあるコックの付いた穴Bから水を コックの高さまで注ぎ, コックを閉める。 次に, 組み込んであ るヒーターから気体に熱をゆっくり加え、容器の上端℃までピストンで動かす. 穴Bから容 器の上端 Cまでの高さをcとする. 水の表面が容器の上端Cに達した後は、水は容器の外に あふれ出る. ピストンの質量および厚さを無視し、重力加速度の大きさをg 水の密度をと して、次の問いに答えよ. 解答は上に与えられた記号 a, b, c, S, Po, To, p, g のみを用い て表せ. (1)ピストンが動き始めるとき (この状態を1とする)の容器内の気体の圧力 p1, 絶対温度T1 定モル比熱 cy モル比熱 を求めよ. その気体の絶対温度と ピストンが

回答募集中 回答数: 0
物理 高校生

速度の合成の(4)で、CDを求める所からイマイチ理解出来ないので、誰か噛み砕いて教えて欲しいです

1. 速度の合成 図のように、一定の速さで一様に流れる川に浮かぶ船の運動を考える。 船は、静止している水においては一定の速さ vs (vsv) で進み, また、瞬時に 向きを自由に変えられる。 最初, 船は船着場Aにいる。 Aから流れに平行に 下流に向かって距離L離れた地点をB, A から流れに垂直に距離W 離れた地 点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは無 視できるものとする。 C D 川 WW ひろ 三 A M B L (1)地点AとBを直線的に往復する時間 TB を L, vs, v を用いて表せ。 →正 (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流れに垂直に 船が進むようにして,地点AとC を直線的に往復する時間 Tc を W, vs, v を用いて表せ。 (3)L=Wのとき, Tc を TB, vs, v を用いて表せ。 また, 時間 Tc と TBのうち長いほうを答えよ。 (4)船首の向きを, AC を結ぶ直線に対し角度8 (80)だけ上流向きに向けて地点Aから船を進めると 地点Dに直線的に到着する。 その後、地点DからCに、流れに平行に進み, 地点Cに到着する。 地 点AからDを経由し Cまで移動するのに要する時間を W, vs, v, 0を用いて表せ。 分解する [21 東京都立大] (4) Ms. M UsW RUSCOSE MS COS Mssing M Ľ 流されてしまう W=uscostAp AからDの時間 W Ł. CAD=COSO CD = (u-ussingtap mussingi Mscost CD=us-utpe と流されたしかり toc= MSCD の時間 M5-1 u-ussing TtAp+toc こ (1-sin) W (Ms-m) Coso W

回答募集中 回答数: 0
物理 高校生

21の2問ともできれば図などを用いて解説していただけたら嬉しいです

www n T 9 とする。 物 り, 物体Bの加速度はイm/s2 である。 時刻 2s において, 物 はウmである。 時刻 OS の後, 物体Aと物体Bの位置が再び同じになる時刻は エ また、 その時刻において, 物体Bに対する物体Aの相対速度は である。 オ m/sである。 [19 名城大] 15,16 21 等加速度直線運動のグラフ 水平面上にx軸をと 加速度の成分 (m/s2) り 鉛直方向にy軸をとる。 いま, x軸上の点Aから飛行 機が時刻 t=0s に, 初速度0m/sで出発し, 点Aよりx 軸上の点Bに向けて飛行した後, 点Bに到着する場合を考 える。 AからBへの向きをx軸の正の向きとし,鉛直上向 きをy軸の正の向きとする。 ただし, 飛行機はxy 平面内 を運動するものとする。 飛行機の加速度のx成分と時間の 関係,および速度のy 成分と時間の関係は,それぞれ図1 と図2に示されている。 次の問いに有効数字2桁で答えよ。 (1) 飛行機が最高高度に達したときの水平面からの高さは 何mか。 3 500 1000 O」 時間 (s) 図 1 -3. 速度のy 成分 (m/s) 20 500 1000 時間 (s) -20 (2) AB間の水平距離は何mか。 [22 千葉工大] 15,16 12 ヒント 19 2台の自動車の速度の差が0になった瞬間, 車間距離は最短となる。 20 (エ) 求める時刻を t[s] として, AとBの移動距離についての方程式を立てる。 21 (1) 図2のグラフがt (時間) 軸と囲む面積が鉛直方向の移動距離を表す。 の解説動画

回答募集中 回答数: 0
1/22