学年

教科

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

指針のところに書いてある「衝突は瞬間的に起こるので摩擦力による力積は0」とあるんですがAとCの衝突なのになぜ摩擦力による力積は0になるんでしょうか?

発展例題14 重ねた物体との衝突 図のように、水平でなめらかな床の上に,質量 2mの物体Aが置かれ, その上に質量mの物体Bが 置かれている。Aと床の間には摩擦がなく, AとB C TELL LEXICO の間には摩擦があるとする。 物体Aの左側から,質 小屋 12 量mの物体Cを速さv で衝突させると, 衝突は瞬間的におこり, 最初, 物体Bは動かな かったが,やがてBはAの上にのったまま,Aと同じ速度で運動するようになった。A とCの間の反発係数をeとし, 右向きを正とする。 衝突直後のAとCの速度をそれぞれ 求めよ。 また, 一体となったときのAとBの速度を求めよ。 指針 衝突は瞬間的におこるので, 衝突直 後では、AとBの間でおよぼしあう摩擦力による 力積は0とみなせ, Bの速度は0である。 したが って,衝突前と衝突直後で, AとCの運動量の和 は保存される。 その後, B は動き出すが, 衝突直 後とそのときのA,Bの運動量の和は保存される。 解説 衝突直後のCの速度を vc, Aの速度 HKS をAとする (図)。 このとき, AがBから受ける このとき、1 小 C Vc B A 発展例題15 斜めの空 VA 4120 m 反発係数の式は, Vo 平水2m- 1+e 3 7. 運動量の保存 93 力積は0とみなせる。 したがって, 運動量保存の 法則から,右向きが正なので, mv=mvc+2mvA _ __ 1+e VA = e=- 発展問題 195, 196 A B m VAVC 0-vo 2式から, また,一体となったときのAとBの速度をVAB と する。衝突直後とそのときとで、AとBの運動量 の和は保存されるので 2mvs+0=(2m+m)VAB Vo 3 -vo+0=3mUAB 1-2e 3 Vc= 2m AB= Vo 2(1+e) 9 Vo 第Ⅱ章力学Ⅱ A

解決済み 回答数: 2
1/4