学年

教科

質問の種類

物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1
物理 高校生

y-x図からy-t図にするやり方を教えてください🙇‍♀️

波の性質(3) 要項 y-t図 月 日 < 10 y-t図 例題の正弦波について、 次の位置 での媒質の変位の時間変化をy-t図に表せ。 X=8m+=49 したグラフ。 図 y[m] ある位置に注目して、 媒質の変位の時間変化を表 (1)x=0m (原点) y (m) t 3. (t=3s 4.0 + での波形) -4.0- *(m) 0 1.0 2. 3.0 4.0 8.0 5.0 6.0 7.0 t(s) -3.0 図 いまはr=3s (点Cの Cの変位は-4.0m y[m〕 (2)x=2.0m T-4 4.0 OK! 媒質の動き) r(s) y [m〕 O 30 13 4 -4.0- O. 1.0 2.0 TAA 4.0 3.0 6.0 7.0 5.0 8.0 t(s) -3.0 例題 図のように正弦波がx軸上を正の向き に速さ2.0m/sで進んでいる。 位置 (3)x=4.0m x=8.0m での媒質の変位の時間変化を y-t図に表せ。 y [m] ↑ y[m〕↑ 3.0+ 2.0m/s t=0s 0 x[m] 0 1.0 2.0 3.0 4.0 810/12 14 16 -3.0+ y[m〕+ 3.0 t=1.0s - 3.0 + 810 12/14 16 5.0 6.0 7.0 8.0 t(s) 〔m〕 (4)x=6.0m y[m]↑ x[m] 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t(s) t=2.0s =3.0s y[m〕 3.0+ -3.0 0 y[m]+ 3.0- -3.0 0 y[m]↑ /8 10 12 14/16 〔m〕 8/10 12 14 16 (5)x=16.0m 3.0- x [m] y〔m〕 t=4.0s O -3.0+ 6 810/12 14 16 0 1.0 2.0 3.0 4.0 6.0 5.0 7.0 8.0 t[s] 解 上図のそれぞれについて,x=8.0m での変 位を読みとり,それらをy-t図に点で記して, 正弦曲線で結べばよい。 (6)x=20.0m y[m] 3.0+ y[m〕↑ 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0/8.0 t[s] -3.0+ 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t(s)

回答募集中 回答数: 0
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0
物理 高校生

解き方がほんとにわからないです

1. 電池の起電力と内部抵抗を調べるために、電池と可変抵抗を図のように 子 する。 はじめ可変抵抗の抵抗を最大にしておき、スイッチを入れ、 [EV[V]と 抗値を少しず [A]を測り、スイッチを切る。 つ小さくしながら同じ測定を繰り返す。 すると図9のような結果が得られた。 V(V) 15.0 10.0 5.0 図 A 0 1.0 2.0 3.0 I(A) 9 wwwwww 4 電池の起電力 E[V) と内部抵抗 (Ω)はそれぞれいくらか。 それぞれの解 群のうちから正しいものを……つずつ選べ。 E- 6 5 の解答群 ① 2.5 ② 5.0 7.5 ④ 10 ⑤ 12.5 15 6 の解答群 10 ② 2.5 5.0 ④ 6.0 ⑤ 10 5 可変抵抗で消費される電力」 P(W) は端子電圧の関数としてどう表され るか。 次の①~④のうちから正しいものを一つ選べ。 0 + V₂ 7 © (E-V)V Ⓒ + Ev +-v 6 電力Pが最大になるのは端子電圧がいくらのときか。次の①~④のう ちから正しいものを一つ選べ。 V= 8 1 0 ④ E 2. 追加 問2抵抗値が R の抵抗二つと起電力がEの電池二つを, 図2の回路(a), (b)の ように接続する。 それぞれの回路で電流計を流れる電流の大きさを1. Iv とするとき, I In の大小関係として正しいものを、下の①~⑩のうち から一つ選べ。 2 EL Iold 抵抗一つを 電池一つに つないだとき の電流とする。 (b) (a) 図2 ①=v=Lo 21<<1 1=1<1 ⑤1<<1 ⑥1=1<1 ⑦ ⑧1.<<I 1<I<h 1<1-1

未解決 回答数: 1
1/26