学年

教科

質問の種類

物理 高校生

問17の問題についての質問です。 この問題のベクトル図はどういうに考えればいいのでしょうか。「この人が西向きに1.0m/sで歩いている」と書いているので、左向きにベクトルを書くと思ったんですが、実際は反対に書いていたりとなぜこのベクトル図になったのか分かりません。

4/20 (ワシントン xo Step 3 ◆解答編 p.10~ 13 16 物理 速度の分解 上昇中のヘリコプターを地上から見ると、速度の水平成分が 12.0m/s 鉛直成分が9.0m/sであった。 このヘリコプターの速度の大きさを求めよ。 コプターが, 水平より 30° 斜め上向きに30m/sの速度で飛んでいるときの, 速度の水 また、速度の向きが水平方向となす角を0として, tan の値を求めよ。 さらに、ヘリ 平成分と鉛直成分をそれぞれ求めよ。 XX 17 物理 相対速度 風が吹いている中を人が歩いている。この人が西向きに 1.0m/s で歩くと,風はちょうど北東から吹いているように感じる。また,この人が西向きに 4.0m/sで走ると, 風はちょうど北から吹いているように感じる。 風の速さを求めよ。 xx 18 等加速度直線運動 列車が一定の加速度α 〔m/s']で直線軌道上を走っている。 地 点Aを列車の前端が通過したときの列車の速度は u[m/s], 後端が通過したときの速度 はv[m/s]であった。 2(1) この列車全体が地点Aを通過するのに要した時間はいくらか。 (2)この列車の長さはいくらか。 (3)この列車の中点が地点Aを通過したときの列車の速さはいくらか。 2 し に 線 用 老 1 > LIL

解決済み 回答数: 1
物理 高校生

⚪︎11は有効数字を気にしていないのは何故ですか

などの は平均を表す。 」 は, その次に書く物理量の変化分を表す。 ①平均の加速度 x軸上を正の向きに進む物体が,ある時刻に点Pを速さ8m/sで 通過し, それから 3.5 s 後に点Qを15m/sの速さで通過した。 PQ 間の平均の加 速度の大きさは何m/s2 か。 回 平均の加速度 東向きに12m/sの速さで進んでいた物体が, その3s後に西向き に6m/sの速さになった。 物体の平均の加速度の向きと大きさを求めよ。 9 1等加速度直線運動 次の等加速度直線運動をする物体の加速度の大きさは, それぞ れ何m/s2 か。 (1) 静止していた物体が, 動き出してから 5.0s後に速さが20m/sになった。 (2)静止していた物体が動き出してから 4.0s間に12m進んだ。 (3)静止していた物体が動き出してから8.0m進んだところで速さが 4.0m/s になった。 10 ①4等加速度直線運動 一直線上を3.0m/sの速さで動いている物体が,一定の加速度 0.80m/s' で加速した。 加速し始めてから5.0s 後の速さは何m/sか。 [10] 15 等加速度直線運動 一直線上を2.0m/sの速さで動いている物体が,一定の加速度 4.0m/sで加速した。 加速し始めた位置から12m進むのに要する時間は何sか。 10 ③186m/2 陰 1m/s は,ヒトの歩 例題 1 直線運動 右の2つのグ A. B の運動の 刻を横軸にそれ (1) Aは時刻 2 通過する。 そ また 時刻 よ。 グラフ (2) Bはどの (3)Bの運動 [s] とする。 16等加速度直線運動 一直線上を10m/sの速さで走っている車が一定の加速度で加 速し,25m 進んだところで15m/sの速さになった。 加速度の大きさは何m/s2 か。 10 ① 等加速度直線運動のグラフ x軸上を,右のひtグラフで表 されるような運動をする物体がある。 (1) 物体の加速度の大きさは何m/s2 か。 v [m/s] 4.0 2.0 (2) 時刻t=0〔s〕に位置x=0[m] を通過したとすると, 時刻 t=5.0[s] における位置は何mか。 -t(s) O 5.0 アドバイス 速度の ① 変位,速度, 加速度 25.0m/s ③18km/h 5.0m/s ④AからBの向きに 1.8m/s 南東の向きに1.4m/s' ⑤成分:1.7m/sy成分:1.0m/s 60.4m/s,2.0m/s ③ 5m/s 25m/s 96.0.9.6m10 (1) 2m/s (2)8m 75.0m/s 112m/s2 12 西向きに6m/s2 (1)4.0 m/s² (2) 1.5 m/s² (3) 1.0 m/s² 7.0 m/s 2.0s 2.5 m/s² 17(1) 0.40 m/s² (2) 15 m 問題 未知・ 等加速 ・初め 正の v, c の向 12 第Ⅰ部 様々な運動

解決済み 回答数: 1
物理 高校生

オレンジ並み線の部分です 10t=2分の1×0.50t2乗ではダメですか?

知識 16 応用例題1等加速度直線運動と相対速度 止まっていた自動車Aが一定の加速度で走り始めた。Aが走り始めた瞬間に,Aの 横を10m/sの一定の速さでAが動く向きに走ってきた自動車Bが追い越していった。 Aは走り始めてから 100m 走ったところでBと同じ速度になった。 Aの加速度の大きさはいくらか。 (2)AがBに追いつくまでの走行距離を求めよ。 (3)AがBに追いついたとき,Aから見たBの相対速度を求めよ。 ! センサーフ 時刻 t = 0 に位置x=0を 同時に通過 (出発) したもの として考える。 解説 自動車 A が走る向きをx軸の正の向きとする。 v=0 加速度 α a →10m/s -100 m- 10m/s を であ (1) 23 (3) 知識 17 上泉 上昇1234 →UA グラフ (1) (2) (3) →10m/s グラフ (4) v[m/s] 自動車A- 自動車B 10 DOD B -x (m]- 知識 (1)Aの加速度をα[m/s] とすると,ぴ-v=2axより, 10°-02=2a×100 ゆえに,a= 0.50m/s2 (2)A が発進してから自動車Bに追いつくまでの距離を x[m], かかった時間を [[s] とすると, 1 2 A について, x=vot+=aťより,x=0+≒×0.50t…① Bについて, x=vtより, x=10t 0+1/2×0.50 [発展] 18 船 (1) (2) …② t[s] 式 ①,②よりを消去すると, x= 速度が同じ ると、よ=1/2x0.50×(赤)~ IC 知 グラフ 1 になる時刻 AがBに追い つく時刻 x(x-400)=0 ゆえに、x=400m (x=0は不適) 物 三角形と長方形の面積が等しく なる時刻にAがBに追いつく (3)追いついたときのAの速度をva [m/s] とすると, v=2ax より vA-02=2×0.50×400 ゆえに,ひA=√2×0.50×400=20m/s Aから見たBの相対速度を v^B [m/s] とすると, VAB=UB-VAより, VAB=10-20=-10m/s よって,進む向きと逆向きに10m/s (1 (2

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

水の電気分解で水素と酸素の割合が2:1で電極にくっつくのは分かるのですが、この問題でどうやって陰極と陽極を区別しているのかがよくわかりません… よろしくお願いします🙇‍♂️。

N がら出題の ように配慮 くって に適する数値を答えよ。 [ ] カ 陰極 失って 陽極 失って ガイド 陽極では2C1Cl2 + 2e - 陰極では Cu2+ + 2e → Cu 解答に得 多数掲載 「標準問題 とめた「 重要 005 [水の電気分解、 気体の量、燃料電池] TIL 問題」には 右図は電気分解の装置である。 この装置では電極をそれぞれ試試験管A 験管A および B で囲み, 発生する気体を集める。 電極は陽極側, 試験管 B 答の方針」 い問題に 陰極側ともに白金めっきをほどこしたチタン電極を使用してい えて解ける る。発生した気体は電極と反応せず、水溶液に溶けないものと する。 次の問いに答えなさい。 徹底的 別冊解 各問題を くわしい 電源装置を接続し電流を流すと, 水の電気分解が起こった。 (1) 試験管Aと試験管Bに集まる気体の体積比はどれか。 ア~うすい水酸化ナトリウム水溶液 オから選べ。 ooo ooo ooo000 ° 0 0 0 0 0 0 0 0 0 1 電極 0000000000 入試 ア 3:1 イ2:11:1 エ 1:2 アップ」 (2) 試験管Aに集まる気体はどれか。 ア~オから選べ。 オ 1:3 Fb Dr ア 酸素 イ 水蒸気 ウ 水素 エナトリウム オ二酸化炭素 電気分解により試験管AおよびBの中に気体が十分にたまってから、電源装置をはずして 代わりに電子オルゴールをつないだら, 電子オルゴールが鳴った。 (3) このとき起こった化学変化を化学反応式で書け。 (4) 次の文の① [ do I T ②に入る最も適当な語を, ア~カからそれぞれ選べ。 (3)では,装置の中で ① ■エネルギーから② エネルギーへの変換が起こって

解決済み 回答数: 1
物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
1/159