学年

教科

質問の種類

物理 高校生

問2 の弾性力による位置エネの式の意味がわかりません。よろしくおねがいします

15 問1 問2 ⑥ ドーは保存されるので から水平面上を運動して 問1 図aのように、上のばねは だけ伸び、下のばねは だけ縮んでいる。 よって 小球にはたらく力は、大きさ から点に達する 存されるので、重力に 水平面とすると の上のばねが上向きに引く力、 大きさ fi-k(l-h) 1-M の下のばねが上向きに押す力と 大きさ mgの下向きの重力であ る。 したがって, 小球にはたら 力のつりあいから 12 h mg 15 面にする直前の小 k(l-h)+k(l-h)-mg=0 であるので にする。 地球上での h=l- mg 2k ギーは、 この力学的エネル の2つの運動エネ 以上より,正しいものは ① 問2 小球の高さが1になったとき, ばねの長さの合 計がyなので,図bのように, 上のばねはy-21 だ け伸び、下のばねは自然の長さとなっている。 よっ て, 小球にはたらく力は,大きさ fi=k(y-21) の上のばねが上向きに引く力と大 きさmgの下向きの重力である。 したがって, 小球にはたらく力の つりあいから k(y-21)-mg=0 であるので 0000000 y= mg_ k +21 た y-21 ト mg 重力加速度の 動摩擦力は物 ある。 物体の初 までの距離を! レギーの変化が 2μg は24倍に 2倍になる。 ③となる。 また, 手がした仕事 W は ば ねとおもりからなる系の力学的エ ネルギーの変化であり、図aと図 bの状態の小球の重力による位置 エネルギーの変化 40 と弾性 力による位置エネルギー(弾性エ 図 ネルギー)の変化 40th の和に等しい。 よって W-40 +40 ばね =mg(1-n+1/24(y-212-12(1m)×2} =mg(1-h)+1/21k(y-21)-(1ール)。 以上より,正しいものは ⑥。

解決済み 回答数: 1
物理 高校生

コンデンサーについてです。 (1)の解説のところで、流れる電流は少しずつ小さくなっていくとあるのですが、何故でしょうか。 自分のイメージでは、例えばコンデンサーには10の電気量を貯められて電池は単位時間当たり1の電気量が放出されるとした時に、流れる電流は常に1でありコンデン... 続きを読む

チェック問題 1 コンデンサーの充放電 10分 図の回路で、 (1) スイッチを aに入れコンデ ンサー Cを充電してから十 分時間が経つまでに R で発 生した全ジュール熱はいく らか。 R₁ R₂ R3 (2)その後スイッチをbに切りかえてから,十分時間が経つ までに R2, R3で発生したジュール熱J2, J3はそれぞれい くらか。 ただし, はじめの電気量は0とする。 解説 (1) 図のように,流れる電流はだんだん小さくなっていき, つ いには0に近づいていくぞ。 (前) ON! 直後 図 a 後 十分時間後 +++ +CV Ev -CV このようなとき,消費電力の公式 I2Rで全ジュール熱を求められるかな? ムリです。 電流I→I』→0と変化していくから, I'R この式を単純に使えません。 このように,電流Iが一定でないときは, 1秒あたり発生するジュー ル熱の式IR を使って直接全ジュール熱を求めることはできないね。 そ こで,〈回路の仕事とエネルギーの関係》で間接的に求めるしかないのだ。 CS CamScanner でスキ 第14章 回路の仕事とエネルギーの関係 |183

解決済み 回答数: 1
物理 高校生

物理です。 問2についてです。 2枚目が解答ですが、×2している理由が分かりません。

15. 固定した2本のばねの間に付けてつり下げた小球 10分 自然の長さ, ばね定 数kの2つの軽いばねを,質量mの小球の上下に取り付けた。下側のばねの端を床 に取り付け、上側のばねの端を手で引き上げた。重力加速度の大きさを g とする。 問1 図1のように, ばねの長さの合計を21にして小球を静止させた。小球の床か らの高さんを表す式として正しいものを、下の①~⑤のうちから1つ選べ。ただ し、2つのばねと小球は同一鉛直線上にあるものとする。 ① 1-mg 21 Il l l l l l l l l ②l- 2k mg k ③1- 3mg 2k 2mg_ 5mg 4 1- ⑤ Z- k 2k 問2 次に,図2のように, 床から測った小球の高さが1になるまで, ばねの上端を ゆっくり引き上げた。 このときのばねの長さの合計」と, 高さんから1まで小球を 引き上げる間に手がした仕事 W を表す式の組合せとして正しいものを、下の①~ ⑥のうちから1つ選べ。 図 1 W y A k ① mg+20 mg(1-h)+1/2 (y-1-k(21-h)" 2k ② mg +21 2k ③ mg_ +21 2k ④ mg +21 k ⑤ mg+20 mg(1-h)+k(y-212-k (1-h)^ k mg(1-h)+(y-21)² —k(1− h)² 2 k mg(1-h)+(y-1)²—k(21—h)² 2 mg(l—h)+k(y−21)² — k(1− h)² llllllllll k ⑥ mg_ +21 2 mg(1-h)+1/2 (y-21) -k (1-h)" [2015 本試〕 図2 k NERELL 1 1

回答募集中 回答数: 0
1/8